Лента событий:
TALMON предложил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
132
всего попыток:
145
Известно, что (TWO)2=THREE, одинаковым буквам соответствуют одинаковые цифры, разным - разные. Чему равно TWO?
Задачу решили:
30
всего попыток:
92
Пусть a, b и c - корни кубического уравнения x3+3x2+5x+7=0. Для кубического многочлена p(x) известно, что p(a)=b+c, p(b)=c+a, p(a+b+c)=-16. Найти p(0).
Задачу решили:
49
всего попыток:
80
Найти максимум m=xy2z2/(x5+y5+z5) для всех положительных чисел x, y, z. В ответе введите значение (5m)5.
Задачу решили:
53
всего попыток:
65
Пусть x, y, z ≥ 0 и x+y+z=1. Найдите максимум x(x+y)2(y+z)3(z+x)4.
Задачу решили:
98
всего попыток:
115
При каком минимальном натуральном n выполняется неравенство
Задачу решили:
64
всего попыток:
120
Пусть p(n) является произведением всех делителей для целого положительного n (включая 1 и n). Будем число n называть "особым", если p(n)=n2. Найдите сумму первых пяти особых чисел.
Задачу решили:
55
всего попыток:
99
Рассмотрим возрастающую последовательность целых положительных чисел, квадрат которых заканчивается на 889. Найти 889-е такое число.
Задачу решили:
49
всего попыток:
99
Найти сумму всех возможных значений k таких, что 2k+3m+1=6n, все k, m и n - целые.
Задачу решили:
35
всего попыток:
54
Пусть k, m, n - натуральные числа меньшие чем 1215. Найти количество упорядоченных троек таких, что k2+7m2+5, m2+7n2+5, n2+7k2+5 - являются целыми квадратами.
Задачу решили:
52
всего попыток:
127
Пусть множество S такое, что: 1) 2 принадлежит S 2) если n принадлежит S, то и n+5 принадлежит S 3) если n принадлежит S, то и 3n принадлежит S. Найдите максимальное n из S меньшее 2009.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|