img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 48
всего попыток: 58
Задача опубликована: 07.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.

Задачу решили: 28
всего попыток: 118
Задача опубликована: 09.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?

Задачу решили: 43
всего попыток: 47
Задача опубликована: 11.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно. При этом |AK| = |BK|, а |KM| = 5, найдите |AN|

Задачу решили: 71
всего попыток: 115
Задача опубликована: 14.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Грузчики Коля и Петя носят ящики. Переноска маленького ящика занимает у Пети 1 минуту, а у Коли 3 минуты. Зато большой ящик Коля переносит за 5 минут, а Петя — за 6. Всего им нужно перенести 10 больших и 10 маленьких ящиков. За какое наименьшее количество минут они могут это сделать?

Задачу решили: 70
всего попыток: 83
Задача опубликована: 16.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pete

Найдите сумму всех простых чисел, которые являются одновременно суммой двух простых чисел и разностью двух простых чисел.

Задачу решили: 40
всего попыток: 155
Задача опубликована: 18.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?

Задачу решили: 47
всего попыток: 71
Задача опубликована: 23.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Sam777e

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).

Задачу решили: 43
всего попыток: 51
Задача опубликована: 25.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: plush

Найдите максимальную сумму всех простых чисел p, q, r и s таких, что их сумма — простое число. А числа p2 + qs и p2 + qr — квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.) 

Задачу решили: 47
всего попыток: 49
Задача опубликована: 28.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и P(19) = P(94) = 1994.

Задачу решили: 55
всего попыток: 60
Задача опубликована: 30.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите сумму всех простых p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.