Лента событий:
TALMON предложил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
53
Найти все такие f(x), что (x-1)f((x+1)/(x-1))-f(x)=x для x≠1. В ответе укажите сумму значений этих функций в точке x=2016
Задачу решили:
44
всего попыток:
49
Числовая последовательность a0, a1, a2, ... такова, что при всех неотрицательных m и n (m >= n) выполняется соотношение am+n + am−n = 1/2(a2m + a2n). Найдите a2016, если a1 = 1.
Задачу решили:
43
всего попыток:
53
Рассматриваются всевозможные квадратичные функции f(x) = ax2 + bx + c, такие, что a < b и f(x) >= 0 для всех x. Какое наименьшее значение может принимать выражение (a + b + c)/(b − a)?
Задачу решили:
54
всего попыток:
87
В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?
Задачу решили:
53
всего попыток:
76
Пусть P(n) - это произведение всех ненулевых цифр натурального числа n. Найдите P(1)+P(2)+...+P(1000).
Задачу решили:
39
всего попыток:
68
На сторонах квадрата выбираются случайным образом 3 точки. Найдите вероятность того, что центр квадрата находится внутри треугольника, построенного по выбранным точкам.
Задачу решили:
45
всего попыток:
63
Назовем билет с номером от 000000 до 999999 отличным, если разность некоторых двух соседних цифр его номера равна 5. Найдите число отличных билетов.
Задачу решили:
65
всего попыток:
75
Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны. Найти отношения площадей А и В.
Задачу решили:
42
всего попыток:
54
Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите сумму всех таких значений α, не превосходящих 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.
Задачу решили:
37
всего попыток:
72
Пусть a, b и c — попарно взаимно простые натуральные числа. Найдите сумму всех возможных значений (a + b)(b + c)(c + a)/abc , если известно, что это число целое.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|