img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 115
Задача опубликована: 13.12.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.

Задачу решили: 53
всего попыток: 58
Задача опубликована: 15.12.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вася, начиная с 1000-го года, начал извлекать кубические корни числовых значений годов и обнаружил год, кубический корень которого имеет первые 10 различных цифр. Какой был этот год, если известно,что Вася именно в том году занимался этой арифметикой. 

Задачу решили: 67
всего попыток: 81
Задача опубликована: 18.12.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Какое минимальное количество целых чисел необходимо, чтобы сумма их пятых степеней была равна 28?

Задачу решили: 81
всего попыток: 90
Задача опубликована: 20.12.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zhekas (Евгений Сыромолотов)

Найти сумму радиусов всех трех окружностей

Задачу решили: 47
всего попыток: 90
Задача опубликована: 22.12.17 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вася продал два товара А и В за 280 руб, причем А продал дороже на 8%, а В дешевле на 8%. При этом общая стоимость обоих товаров принесла целочисленный доход n% (n>0). Найти все значения n. В ответе указать их сумму. 

Задачу решили: 61
всего попыток: 85
Задача опубликована: 25.12.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

На продолжении диагонали АС квадрата АВСD отмечена точка Е, отстоящая от вершины В на расстоянии, равном диагонали. Найти угол ЕВС в градусах.

Задачу решили: 42
всего попыток: 343
Задача опубликована: 28.12.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Father

Обычный магический квадрат 3*3 можно заполнить натуральными числами 1,2,....9 так, что сумма чисел по горизонталям, вертикалям и диагоналям одинакова и равна 15. Можно ли этот квадрат заполнить разными натуральными числами, чтобы произведение чисел по горизонталям, вертикалям и диагоналям было одинаковым. Найти наименьшее значение возможного произведения.

+ 1
+ЗАДАЧА 1620. Два символа (А.Ф. Кржижановский)
  
Задачу решили: 24
всего попыток: 80
Задача опубликована: 29.12.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: MMM (MMM MMM)

Восстановите два недостающих символа в данной последовательности букв или цифр: ВДН?ВД?БИЦ.

Задачу решили: 41
всего попыток: 108
Задача опубликована: 03.01.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Три игрока 1, 2 и 3 играют в морской бой. В одно время играют двое. Все игроки имеют одинаковую силу. Победитель играет с тем, кто не играл. Выигрывает в турнире тот, кто первым выиграл 2 игры подряд. Вычислите вероятность того, что победит 3-й игрок, при условии, что первая игра была между 1 и 2.

Задачу решили: 47
всего попыток: 95
Задача опубликована: 05.01.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Ярослав, Костя и Настя играют в быстрые шахматы. В одно время играют двое, проигравшего заменяет тот, кто не играл. Ярослав выиграл 10 раз, Костя - 21. Какое минимаьное число раз могли мальчики сыграть между собой?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.