img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 76
всего попыток: 113
Задача опубликована: 11.10.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Даны точки в пространстве с целыми координатами x, y, z, причём 0<x<2010, 0<y<2010, 0<z<2010. Для каждой такой точки напишем сумму ее наибольшей и наименьшей координаты. Чему равна сумма всех написанных чисел?

Задачу решили: 124
всего попыток: 259
Задача опубликована: 13.10.10 08:00
Прислал: pacman2011 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: bbny

Три миссионера и три аборигена хотят переправиться через реку на лодке, которая вмещает только двоих. Если миссионеры окажутся в меньшинстве на берегу или рядом с берегом, то аборигены их сразу съедят. За какое наименьшее число рейсов все они смогут безопасно переправиться на другой берег? (Рейсы нужно считать все: туда и обратно — это два рейса.)

Задачу решили: 175
всего попыток: 305
Задача опубликована: 15.10.10 08:00
Прислала: Marishka24 img
Источник: Уральский турнир юных математиков
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: marafon (Игорь Пущин)

Чтобы от театра доехать до цирка, можно сесть на остановке на автобус №1 или на автобус №2. Они ходят с постоянными интервалами, причем автобус №1 в 2 раза реже, чем №2. За последние 20 минут автобус прошёл 16 минут назад, 10 минут назад и 2 минуты назад. Через сколько минут придёт следующий автобус?

Задачу решили: 79
всего попыток: 205
Задача опубликована: 23.10.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: xyz (Анна Андреева)

Найдите предел

13-ой производной функции

.

Задачу решили: 123
всего попыток: 270
Задача опубликована: 25.10.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

На какое наибольшее количество нулей может оканчиваться произведение трёх натуральных чисел, сумма которых равна 2003?

Задачу решили: 49
всего попыток: 520
Задача опубликована: 27.10.10 08:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Соревнование оценивается 8 судьями, каждый из которых ставит участнику  "хорошо"  или  "плохо". Известно, что для любых двух участников двое судей поставили обоим "хорошо", двое –  "хорошо"  первому и  "плохо"  второму, двое –  "плохо"  первому и  "хорошо"  второму, и двое обоим поставили  "плохо". Определите максимально возможное количество участников.

Задачу решили: 96
всего попыток: 418
Задача опубликована: 03.11.10 12:00
Прислала: Marishka24 img
Источник: Уральский турнир юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.

Задачу решили: 109
всего попыток: 210
Задача опубликована: 04.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

В самолёте летели пионеры. Среди них были (хотя бы в количестве одного) пятиклассники, шестиклассники и семиклассники (других не было). Если выбрать любых 100 пионеров, среди них обязательно окажутся пятиклассник и шестиклассник. Какое наибольшее количество пионеров могло лететь в самолёте?

 

Задачу решили: 78
всего попыток: 189
Задача опубликована: 05.11.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.

Задачу решили: 65
всего попыток: 99
Задача опубликована: 08.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.