Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
58
всего попыток:
501
Внутри выпуклого четырёхугольника с периметром 60 отмечена точка. Найдите наибольшее целое значение суммы четырёх расстояний от неё до вершин четырёхугольника.
Задачу решили:
87
всего попыток:
114
Лектор роняет указку, она падает с кафедры и ломается на три куска. Найдите вероятность того, что из обломков можно сложить треугольник. (Считать, что места разломов — независимые случайные величины, равномерно распределённые по длине целой указки.)
Задачу решили:
76
всего попыток:
277
Найдите остаток от деления многочлена x57+5x56-13x31-7x30-x2+2x-3 на 7x2+7. В ответе укажите значение многочлена при x=1.
Задачу решили:
99
всего попыток:
154
Имеется 4023 последовательных натуральных числа. Известно, что сумма квадратов первых 2012 чисел равна сумме квадратов последних 2011 чисел. Найдите первое число.
Задачу решили:
108
всего попыток:
171
При каком натуральном n величина 2011n·n2/2012n принимает наибольшее значение?
Задачу решили:
46
всего попыток:
84
В остроугольном треугольнике АВС отрезки ВО и СО (где О - центр описанной окружности) продолжены до пересечения в точках D и Е со сторонами АС и АВ треугольника. Оказалась, что угол BDE равен 50 градусам, угол CED равен 30 градусов. Найдите величину самого большого угла треугольника АВС в градусах.
Задачу решили:
108
всего попыток:
152
В треугольнике ABC BC = a, CA = b, AB = c. Найдите градусную меру угла B, если a = c и a2 = b2 + ba.
Задачу решили:
82
всего попыток:
176
В треугольнике ABC BC:CA:AB = 3:5:4. На отрезке AB выбрана точка E, а на AC точка F, причем AE:AF = 3:2. Пусть M - середина BC, Q - пересечение AM и EF. Найти значение
Задачу решили:
60
всего попыток:
150
Мальчики и девочки выбрали каждый по натуральному числу, мальчики - a1, a2, ..., a10, девочки - b1, b2, ..., b10. Известно, что для чисел выполняются следующие условия:
Задачу решили:
44
всего попыток:
92
На клетчатой бумаге отмечены точки A и B. Примем длину стороны клетки за 1. Посчитайте количество маршрутов идущих из A в B по сторонам клеток и имеющих длину 11. (Маршрут может менять направление только в углах клеток. Допускаются маршруты, проходящие несколько раз через одну вершину (включая A и B) или сторону клетки.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|