img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 97
всего попыток: 127
Задача опубликована: 24.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Когда в конце года учитель подводил результаты, то заметил что только 10 учеников получили в течение года хотя бы одну двойку, 9 учеников получили не менее двух двоек, 8 - не менее трех и т. д., а один ученик получил 10 двоек. Больше 10 двоек никто из учеников не получал. Сколько всего двоек в этом классе получили все ученики?

Задачу решили: 25
всего попыток: 291
Задача опубликована: 19.08.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Есть отрезок длины 100. Петя выбирает натуральное число n. Вася и Петя по очереди (первым делает ход Вася) выбирают любой из имеющихся отрезков и делят его на два отрезка произвольной длины. После своего n-го хода Петя из полученных отрезков пробует составить выпуклый многоугольник максимальной целочисленной площади. При каком минимальном n Пете удастся это сделать независимо от игры Васи.

Задачу решили: 38
всего попыток: 51
Задача опубликована: 23.08.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Вася кодирует стихи, заменяя все буквы русского алфавита различными числами от 1 до 33, и посылает Маше ссылку на текст и наборы чисел, являющиеся суммами кодов букв в словах. Так, взяв Пушкина, он закодировал Мой дядя самых честных правил 11 8 131 134 165 Когда не в шутку занемог 46 18 27 52 84 Закодируйте васиным кодом слова КРИМПЛЕН, ШТУЧКА, ЗАВОД, ЙОГ. В ответе введите произведение полученных чисел.

Задачу решили: 41
всего попыток: 99
Задача опубликована: 16.09.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
баллы: 100

В конечной последовательности, состоящей из натуральных чисел, встречается ровно 2006 различных чисел. Известно, что если из какого-нибудь члена этой последовательности вычесть 1, то в полученной последовательности будет встречаться не менее 2006 различных чисел. Найдите минимальную возможную сумму членов исходной последовательности

Задачу решили: 22
всего попыток: 155
Задача опубликована: 25.09.13 08:00
Прислал: nauru img
Источник: Санкт-Петербургская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует  способов разложить подарки по мешкам?

Задачу решили: 48
всего попыток: 77
Задача опубликована: 27.09.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Hasmik33

Рассмотрим вещественные числа:

t > 0

x = (1 + 1/t)t

y = (1 + 1/t)t+1

Чему равна точная нижняя граница множества значений выражения xy ?

Округлите ответ с точностью 2-х знаков после запятой.

Задачу решили: 52
всего попыток: 85
Задача опубликована: 30.09.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найти периметр треугольника наибольшей площади со сторонами a, b, c такими, что

0 < a <= 3,5 <= b <= 5,5 <= c <= 7,5

Результат округлить до двух знаков после запятой.

Задачу решили: 26
всего попыток: 66
Задача опубликована: 25.10.13 08:00
Прислала: nellyk img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В окружность Q целочисленного радиуса вписан четырехугольник ABCD, длины всех сторон которого - попарно различные целые числа. Более того, целочислены и длины диагоналей AC и BD.

tt.jpg

Пусть E - точка пересечения касательной к окружности Q, проведенной через точку C, с продолжением стороны AD.  Угол AEC равен углу ACD, и ABCD - четырехугольник минимальной площади, удовлетворяющий всем этим условиям. Найти произведение площадей треугольников DAB и DCB.

Задачу решили: 49
всего попыток: 61
Задача опубликована: 28.10.13 08:00
Прислал: kurtashew img
Источник: МГУ
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.

Задачу решили: 33
всего попыток: 47
Задача опубликована: 04.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В обществе из 15 членов каждое непустое подмножество считается комиссией. В каждой комиссии нужно выбрать председателя, соблюдая правило: если комиссия C является объединением нескольких меньших комиссий, то председателем C должен быть один из председателей этих меньших комиссий. Cколькими способами можно выбрать председателей?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.