Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
116
Чему равна сумма всех целых корней уравнения 1/х + 1/у = 1/999999? Вот небольшая часть этой суммы ... + 2*999999 + 2*999999 + ... для пары-решения х = у = 2*999999.
Задачу решили:
47
всего попыток:
70
Пусть p и q простые числа, а r - целое, и такие, что p(p+3)+q(q+3)=r(r+3). Найдите сумму всех возможных значений p.
Задачу решили:
51
всего попыток:
81
Известно: a+b+c+d=0 Найти 1/a+1/b+1/c+1/d.
Задачу решили:
69
всего попыток:
99
Пусть a+b+c=1 и a, b, c >0. Найдите минимум a2+2b2+c2.
Задачу решили:
19
всего попыток:
96
Найдите максимальное целое число n такое, что существуют n действительных чисел x1, x2, ..., xn которые удовлетворяют неравенству для всех 1 ≤ i < j ≤ n:
Задачу решили:
36
всего попыток:
179
12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.
Задачу решили:
40
всего попыток:
50
Пусть действительные числа a ≥ b ≥ c > 0 и x ≥ y ≥ z > 0. Найти минимум (ax)2/((by+cz)(bz+cy)) + (by)2/((cz+ax)(cx+az)) + (cz)2/((ax+by)(ay+bx)).
Задачу решили:
62
всего попыток:
77
Натуральное число 55n3 имеет 55 делителей, включая 1 и само число. Сколько делителей имеет натуральное число вида 7n7?
Задачу решили:
51
всего попыток:
77
Известно, что уравнение x3-ax2+bx-8=0 имеет все корни действительные, a и b - положительные числа. Найдите миимально возможное значение b.
Задачу решили:
47
всего попыток:
71
Найти минимальное n такое, что количество нулей в конце числа (n+20)!×(n+15)! делится на 2015.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|