img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 44
всего попыток: 55
Задача опубликована: 01.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Найдите все пары взаимно простых чисел a и b (a > b), для которых (a + b)/(a2 − ab + b2) = 3/13. В ответе укажите сумму значений всех пар (ai+bi).

Задачу решили: 58
всего попыток: 63
Задача опубликована: 17.08.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Пятиугольник ABCDE делится отрезком BD на ромб ABDE и равносторонний треугольник BCD. Чему равен угол ACE (в градусах)?

Задачу решили: 53
всего попыток: 87
Задача опубликована: 02.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Пусть S(n) -  сумма цифр натурального числа в десятичной записи. Найдите максимальное число не превосходящее 2015, которое может быть представлено в виде n+S(n).

Задачу решили: 46
всего попыток: 55
Задача опубликована: 05.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Найти натуральное число n такое, что для углов остроугольного треугольника α, β, γ верно sin(nα)+ sin(nβ) + sin(nγ) < 0.

+ 1
+ЗАДАЧА 1414. Точки и раскраски стрелок (И. Богданов, Г. Челноков)
  
Задачу решили: 27
всего попыток: 31
Задача опубликована: 09.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Имеются точки с номерами 1, 2, . . . , 12. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и только по красным стрелкам, и только по синим. Найдите количество однотонных раскрасок.

Задачу решили: 58
всего попыток: 97
Задача опубликована: 16.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

Красная Шапочка вышла днем к бабушке в X часов Y минут и пришла в Y часов Z минут, потратив на дорогу Z часов X минут. Чему равно X?

Задачу решили: 41
всего попыток: 116
Задача опубликована: 23.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.

Задачу решили: 37
всего попыток: 89
Задача опубликована: 10.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Числа от 1 до 20 расположены по кругу так, что минимальная разница между любыми двумя соседними числами максимальна. Найдите эту разницу.

Задачу решили: 22
всего попыток: 28
Задача опубликована: 14.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zmerch

В чемпионате по шахматам участвовало 16 игроков. После его окончания каждому участнику выдали отчет на 16 страницах. На первой указано имя участника, на второй - он и те, у кого он выиграл, на третьей - все люди из второго списка и те, у кого они выиграли, и т.д. на последней, 16-й, все участники со страницы 15 и те, у кого они выиграли. Известно, что для любого участника на его последнюю страницу попал человек, которого не было в его одиннадцатом списке. Какое максимальное количество партий чемпионата могло быть сыграно вничью? 

Задачу решили: 42
всего попыток: 46
Задача опубликована: 19.10.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

Найти минимальное натуральное число N такое, что число записанное теми же цифрами в обратном порядке равно 2N/3.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.