Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
71
Книга имеет 120 страниц, одна (1-я) из которых отведена под титул, одна — под аннотацию и еще одна — под оглавление. На остальных страницах напечатаны сказки, причем каждая сказка начинается с новой страницы. Сумма номеров страниц, на которых начинаются сказки, в пять раз меньше суммы номеров страниц, на которых они заканчиваются. Сколько сказок в книге?
Задачу решили:
25
всего попыток:
31
Есть 6 монет - 2 по одному центу, 2 по одному евроценту и 2 по копейке (монетки подписаны), причем в каждой паре есть одна настоящая и одна фальшивая. Все настоящие монетки весят одинаково и все фальшивые тоже, при этом все фальшивые - тяжелее. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить все фальшивые и как?
Задачу решили:
39
всего попыток:
248
В библитотеке Вовочки 2001 книга - по математике, физике и информатике. Если все книга поставить в один ряд, то между любыми двумя книгами по математике стоит хотя бы одна книга, между любыми двумя книгами по физике стоят хотя бы две книги, а между любыми двумя по информатике стоят хотя бы три книги. Какое максимальное количество книг по информатике может быть у Вовочки?
Задачу решили:
30
всего попыток:
55
Вовочка нашел наименьшее натуральное число, которое представяляет в виде суммы 2002 натуральных чисел, у которых одинаковая сумма цифр. Но, что удивительно, то его же можно представить в виде суммы 2003 чисел, обладающих таким же свойстовм относительно суммы цифр. Что это за число?
Задачу решили:
36
всего попыток:
42
У вас имеется 5 часов со стрелками. Вы можете любые несколько из них перевести вперед. Для каждых часов время, на которое при этом их перевели, назовем временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное количество часов перевода это можно гарантированно сделать?
Задачу решили:
34
всего попыток:
72
Ювелир сделал незамкнутую цепочку из 120 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Задачу решили:
32
всего попыток:
33
В каждую клетку квадратной таблицы размера (22016−1)×(22016−1) ставится одно из чисел +1 или −1. Расстановку чисел назовем удачной, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
Задачу решили:
53
всего попыток:
75
Найдите наибольший общий делитель для всех чисел вида p4-1, где p - простое число, большее 5.
Задачу решили:
27
всего попыток:
45
Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Задачу решили:
43
всего попыток:
55
В четырёх прямоугольниках с соотношением сторон (отношение длины к ширине) 3, 5, 7 и 8 соответственно, проведены диагонали. Найти сумму всех четырёх острых углов пересечения диагоналей в этих прямоугольниках в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|