Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
49
Найдите наибольшее p при котором уравнение
Задачу решили:
33
всего попыток:
40
В треугольнике АВС проведены чевианы АА1 и ВВ1, которые делят стороны АС и ВС так, что СВ1:АВ1=1/3, СА1:ВА1=1/2. Точка пересечения их О отстоит от АВ на расстоянии 6. Найти расстояние от вершины С до прямой АВ.
Задачу решили:
35
всего попыток:
73
Полукруг разбит линиями на три части одинаковой площади. Найдите угол α в градусах. Ответ округлите до ближайшего целого.
Задачу решили:
22
всего попыток:
81
Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.
Задачу решили:
21
всего попыток:
25
В треугольнике ABC соотношения длин сторон: Пусть m - окружность, описанная около треугольника ABC, её длина равна 1440. n - окружность, вписанная в треугольнике ABC. Определим множество W всех таких точек M на окружности m, которые обладают следующим свойством: Очевидно, точки A, B и С принадлежат множеству W. Известно, что множество W можно разбивать на взаимно непересекающиеся сплошные дуги на окружности m. Чему равна их суммарная длина?
Задачу решили:
29
всего попыток:
43
В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.
Задачу решили:
28
всего попыток:
47
В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.
Задачу решили:
5
всего попыток:
14
Если на лист "тетрадки в клеточку" положить квадрат со стороной 6, то он захватит какую-то фигуру из нескольких целых клеток (например, как показано на рисунке). Сколько может быть таких неконгруэнтных фигур? Считаются только максимальные фигуры: если к фигуре можно добавить хотя бы одну целую клетку (быть может), используя поворот и/или сдвиг квадрата по листу, то такая фигура не максимальная. Фигура на рисунке, очевидно, не максимальная. Такие не считаем. В «подробном» решении следует показать все фигуры, либо как-то ясно их описать (например, используя шахматную терминологию).
Задачу решили:
17
всего попыток:
75
В правильном целочисленном треугольнике АВС есть такая точка внутри, что целочисленные расстояния a, b, c до его вершин образуют арифметическую прогрессию и НОД(a,b,c) =1. Найти сторону третьего по величине такого треугольника.
Задачу решили:
5
всего попыток:
23
Поверхность правильного октаэдра разрезать на как можно меньшее количество равных частей и ими оклеить без просветов и наложений простую (тригональную) бипирамиду. Чему равно количество частей? Простая (тригональная) бипирамида - это многогранник, состоящий из двух равных правильных тетраэдров, имеющих общую грань.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|