img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 386
всего попыток: 1340
Задача опубликована: 12.03.09 12:58
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?

Задачу решили: 107
всего попыток: 499
Задача опубликована: 08.05.09 23:16
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Сколькими разными способами можно раскрасить рёбра куба тремя цветами так, чтобы в каждой вершине сходились рёбра трёх разных цветов? (Две раскраски считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 236
всего попыток: 589
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты? 

Задачу решили: 132
всего попыток: 1048
Задача опубликована: 22.05.09 17:53
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?

Задачу решили: 163
всего попыток: 214
Задача опубликована: 09.06.09 01:22
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)

Задачу решили: 178
всего попыток: 391
Задача опубликована: 08.07.09 00:31
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!

Задачу решили: 88
всего попыток: 201
Задача опубликована: 13.08.09 00:31
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Andreo (Андрей Желудев)

Натуральные числа от 1 до 13 записаны в строку. Сколькими способами можно переставить их так, чтобы ни одно число не осталось на своём месте?

Задачу решили: 145
всего попыток: 245
Задача опубликована: 14.08.09 00:18
Прислала: Hasmik33 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В машинном слове 16 бит (бит — это 0 или 1). Сколько существует слов, в которых никакие две единицы не идут подряд?

Задачу решили: 97
всего попыток: 302
Задача опубликована: 18.08.09 09:50
Прислал: Vkorsukov img
Источник: "Комсомольская правда"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Маршрут автобуса состоит из 12 остановок (включая конечные). Автобус вмещает не более 20 пассажиров. Однажды автобус проехал весь маршрут из конца в конец, останавливаясь на всех остановках. Известно, что не было двух пассажиров, которые вошли, а потом и вышли на одной и той же остановке. Какое наибольшее число пассажиров могло быть перевезено автобусом при этих условиях?

Задачу решили: 94
всего попыток: 199
Задача опубликована: 13.09.09 11:18
Прислал: Dremov_Victor img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.