img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 55
всего попыток: 298
Задача опубликована: 15.12.10 12:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

На подводной лодке служат 25 матросов и капитан. Капитан хочет составить как можно больше нарядов по пять матросов в каждом так, чтобы никакие два наряда не имели более одного общего матроса. Помогите, пожалуйста, капитану и напишите максимальное количество нарядов, которое он сможет составить.

Задачу решили: 40
всего попыток: 194
Задача опубликована: 16.12.10 08:00
Прислала: KATEHbKA img
Источник: Ирландская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Множество X состоит из различных (но не всех) натуральных чисел от 1 до 2010 включительно и не содержит ни одной степени двойки с целым показателем. Кроме того, сумма любых двух чисел из X не равна степени двойки ни с каким целым показателем. Найдите наибольшее количество чисел в X.

Задачу решили: 45
всего попыток: 143
Задача опубликована: 18.12.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: casper

Вася написал программу, описывающую подбрасывание нечестной монетки. Первый раз всегда выпадает орёл, второй раз — решка. Начиная с третьего броска вероятность выпадения орла равна отношению числа выпавших до этого орлов к числу произведённых до этого бросков. Например, вероятность выпадения орла при третьем броске равна 1/2, ибо до этого выпали ровно один орёл и ровно одна решка. С какой вероятностью при первых 300 бросках 200 раз выпадет орёл и 100 раз — решка? (Ответ введите в виде несократимой дроби p/q, где p и q — натуральные числа.)

Задачу решили: 39
всего попыток: 114
Задача опубликована: 19.12.10 08:00
Прислал: TALMON img
Источник: Euler Project
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Для натурального числа n обозначим C(n) количество натуральных чисел x меньших n, для которых x2+x+1 делится на n. Чему равно C(p), если p — простое? В ответе напишите без пробелов значения C(k·2k−1) при k=115, 123, 249, 362 и 384. Учтите, что числа k·2k−1 являются простыми при всех указанных значениях k.

Задачу решили: 50
всего попыток: 176
Задача опубликована: 22.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

В трёх стаканах находится a, b и c мл воды, где 0<a<b<c≤200. Разрешена такая операция: количество воды в любом стакане можно удвоить, переливая из любого другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить какой-нибудь стакан. Найдите число троек целых чисел a, b, c, для которых цель не может быть достигнута.

Задачу решили: 76
всего попыток: 102
Задача опубликована: 30.12.10 16:19
Прислал: COKPAT img
Источник: Журнал"Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: scythian (Роман Семёнов)

С каждым из чисел от 000 000 до 999 999 поступим следующим образом: умножим первую цифру на 1, вторую на 2 и так далее, последнюю — на 6. Сумму полученных шести чисел назовём характеристикой исходного числа. Характеристики скольких чисел делятся на 7?

Задачу решили: 57
всего попыток: 112
Задача опубликована: 05.01.11 08:00
Прислал: Busy_Beaver img
Источник: Санкт-Петербургская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: bbny

Марина пришла в казино и решила сыграть в следующую игру. На 100 карточках с обеих сторон написаны (по разу) все натуральные числа от 1 до 200. Карточки выложены на стол так, что видны только числа, написанные сверху. Марина может выбрать несколько карточек и одновременно перевернуть их, а затем сложить все 100 чисел, которые окажутся после этого наверху — полученная сумма и будет её выигрышем. Какую наибольшую сумму Марина может гарантированно выиграть?

Задачу решили: 72
всего попыток: 256
Задача опубликована: 06.01.11 08:00
Прислал: demiurgos img
Источник: по мотивам Всероссийской олимпиады
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?

Задачу решили: 64
всего попыток: 178
Задача опубликована: 08.01.11 10:00
Прислал: COKPAT img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько различных чисел встречается среди чисел [12/n], [22/n], [32/n], ..., [(n−1)2/n], [n2/n] (где [x] — целая часть числа x)? В ответе укажите последнюю цифру при n=20112011.

Задачу решили: 57
всего попыток: 246
Задача опубликована: 09.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 200 одинаковых на вид, вес и ощупь шариков, ровно один из которых радиоактивен. Ещё имеется автомат, в который можно засунуть сколько угодно шариков, бросить 30 рублей и нажать кнопку. Если радиактивности нет, то загорается зелёная лампочка и автомат выдаёт 10 рублей сдачи. Если же обнаруживается радиоактивность, то загорается красная лампочка и никакой сдачи не выдаётся. Какой наименьшей суммой в рублях Вы должны располагать, чтобы гарантированно (т.е. при полном отсутствии везения) найти радиоактивный шарик?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.