img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 58
всего попыток: 133
Задача опубликована: 17.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg

Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?

Задачу решили: 12
всего попыток: 49
Задача опубликована: 29.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)

(Присланная задача изменена администрацией)
Задачу решили: 30
всего попыток: 159
Задача опубликована: 05.09.11 08:00
Прислал: Sam777e img
Источник: Интервью при приёме на работу, задача 113
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

У Вас есть 10 одинаковых стеклянных шариков. Вы бросаете их — можно по одному — с разных этажей 1015-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить все 10 шариков. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.

Задачу решили: 34
всего попыток: 173
Задача опубликована: 03.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?

Задачу решили: 64
всего попыток: 99
Задача опубликована: 08.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x

Задачу решили: 60
всего попыток: 82
Задача опубликована: 17.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.

Задачу решили: 34
всего попыток: 38
Задача опубликована: 21.10.11 08:00
Прислал: demiurgos img
Источник: классика
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Timur

Пусть p(n) — вероятность того, что ни одно из n писем, случайным образом запечатанных в приготовленные для них n конвертов, не дойдёт до своего адресата. Найти предел p(n)при n→∞.

Задачу решили: 52
всего попыток: 190
Задача опубликована: 26.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: kom13 (Дмитрий Комаров)

В клетки таблицы 10×10 вписаны числа от 1 до n (в каждую клетку вписано ровно одно число, а каждое из указанных чисел встречается в таблице не менее одного раза) так, что в каждой строке и в каждом столбце написано не более 5 различных чисел. Найдите наибольшее значение n.

Задачу решили: 149
всего попыток: 249
Задача опубликована: 04.11.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 3 img
класс: 1-5 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Представим, что все натуральные числа выписали в ряд, друг за другом: 1234567891011... Какая цифра стоит на 34788-м месте?

Задачу решили: 76
всего попыток: 110
Задача опубликована: 28.12.11 08:00
Прислал: Artsakh img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zhekas (Евгений Сыромолотов)

В квадрате ABCD |AO| : |BO| : |CO| = 1 : 2 : 3, где О - точка внутри квадрата. Сколько градусов составляет угол AОB.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.