Лента событий:
Sam777e решил задачу "Параллелограмм и две биссектрисы - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
369
всего попыток:
3937
Каково максимально возможное количество сфер, каждая из которых касается всех четырёх плоскостей, являющихся продолжениями граней некоторого тетраэдра? (Тетраэдр — это треугольная пирамида.)
Задачу решили:
188
всего попыток:
2145
В пространстве даны четыре точки, не лежащие в одной плоскости. Сколько существует различных параллелепипедов, для каждого из которых все данные точки являются вершинами? (Различные — как множества; например, равные параллелепипеды, но сдвинутые друг относительно друга, тоже считаются различными.)
Задачу решили:
462
всего попыток:
532
Придумайте шестизначное число, обладающее следующим свойством: при его умножении на 2, 3, 4, 5 и 6 цифры в нём лишь переставляются, но не меняются.
Задачу решили:
294
всего попыток:
669
Какая цифра стоит на 100-м месте после запятой в десятичной записи числа (44+√2009)2009?
Задачу решили:
138
всего попыток:
1031
Вам нужно узнать задуманное число от 1 до 2000. Можно задавать вопросы, на которые тот, кто задумал число, отвечает либо «да», либо «нет». Какое минимальное число вопросов нужно задать, чтобы достоверно определить задуманное число, если отвечающий может и солгать, но не более одного раза?
Задачу решили:
202
всего попыток:
752
Улитка ползет вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый. Какое максимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)
Задачу решили:
129
всего попыток:
1028
В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов? (В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)
Задачу решили:
378
всего попыток:
846
На вечеринке собрались 5 супружеских пар. Встречаясь, некоторые участники вечеринки обменивались рукопожатиями, некоторые нет. (Супруги, разумеется, друг другу руки не пожимали.) Один из участников вечеринки, мистер Смит, опросил всех остальных, сколько рукопожатий сделал каждый из них. Все названные числа оказались разными. Сколько рукопожатий сделал сам мистер Смит?
(Предлагалась на "Первом математическом")
Задачу решили:
125
всего попыток:
351
Известно, что сумма Sn = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n бывает сколь угодно большой. Рассмотрим наименьшее m для которого Sm > 1000000. Требуется найти количество цифр в десятичной записи числа m.
Задачу решили:
104
всего попыток:
688
44 гангстера летают на вертолётах и стреляют друг в друга одновременно. Каждый стреляет в ближайший к нему вертолёт (или в один из ближайших, если несколько из них находятся на равном расстоянии от него), который после этого немедленно взрывается вместе с сидящим в нём гангстером, который всё-таки сам тоже успевает выстрелить. Найдите наименьшее возможное количество убитых. (Вертолёты — это различные точки в пространстве.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|