img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

Задачу решили: 139
всего попыток: 891
Задача опубликована: 09.04.09 13:04
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Среди нескольких компьютерных чипов есть два поддельных, которые обладают повышенной радиоактивностью, а в остальном не отличаются от настоящих. В имеющийся прибор можно засунуть любое количество чипов и узнать, есть ли среди них радиоактивный (но нельзя понять, сколько именно — один или два). Каково максимальное число чипов, среди которых можно гарантировать обнаружение обоих поддельных за 7 проверок?

Задачу решили: 96
всего попыток: 315
Задача опубликована: 01.04.09 11:43
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

В соревнованиях по десятиборью участвуют 1024 человека. Для каждого спортсмена известна его сила в каждом из видов программы, причём силы разных спортсменов различны. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в 10-м виде программы не будет определен победитель. Назовем спортсмена "заведомым аутсайдером", если при любом порядке видов спорта в программе он не может стать победителем. Каково минимально возможное число заведомых аутсайдеров?

Задачу решили: 110
всего попыток: 781
Задача опубликована: 27.04.09 22:18
Прислал: demiurgos img
Источник: по мотивам задачи "Дядька Черномор" И.Н.Серге...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100

Витязи накануне хорошо отдохнули и перед выходом из моря построились не по росту. Перестраиваться они не соглашаются, но их морской дядька может приказать некоторым из них выйти из строя так, чтобы оставшиеся стояли по росту либо в порядке убывания, либо в порядке возрастания. Какое максимальное число витязей он сможет вывести из моря при их наихудшей для него (и наилучшей для них) первоначальной расстановке? Витязи все разного роста, а всего их, как известно, 30.

Задачу решили: 84
всего попыток: 547
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?

Задачу решили: 19
всего попыток: 473
Задача опубликована: 10.06.09 16:27
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями?

Задачу решили: 40
всего попыток: 236
Задача опубликована: 19.11.10 12:00
Прислал: bbny img
Источник: "Квант"
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Father

Квадрат N×N (N≥1000 — натуральное число) разбит на k квадратов, наименьший из которых имеет сторону 1. Найдите минимально возможное k.

 

Задачу решили: 18
всего попыток: 38
Задача опубликована: 20.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: zmerch

18 монет пронумерованы с 1 до 18. Первому игроку известно, что монеты с номерами 1,2,...,9 настоящие, а монеты с номерами 10,11,..,18 - фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,9 - настоящие, а 10,11,..,18 - фальшивые?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.