Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
128
всего попыток:
140
Произведение всех простых чисел, больших 3 и меньших n, имеет сумму цифр 8. Чему равно это произведение?
Задачу решили:
47
всего попыток:
101
В натуральном числе поменяли местами некоторые цифры, стоящие в четных позициях, не тронув цифры в нечетных позициях. Пусть C - сумма цифр разности исходного и полученного чисел и 0<=C<=40. Укажите сумму всех возможных значений C.
Задачу решили:
79
всего попыток:
139
Найти произведение всех целых чисел m таких, что m4-3m2+9 является простым числом.
Задачу решили:
55
всего попыток:
115
Найти все пары натуральных чисел х и у такие, что х2 + 3у и у2 + 3х являются квадратами натуральных чисел. В ответе укажите сумму возможных значений y.
Задачу решили:
29
всего попыток:
192
Из целого числа A вычли число B, полученное перестановкой цифр A. A-B состоит из 2013 единиц. Все эти числа (A, B, A-B, 2013) даны в n-ичной системе счисления. Введите (в 10-ичной системе счисления) сумму всех возможных значений n.
Задачу решили:
52
всего попыток:
72
В натуральном числе W все N цифр различны и расположены в порядке убывания. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1419. Найти все такие числа W и ввести их сумму.
Задачу решили:
45
всего попыток:
166
В натуральном числе W все N цифр различны. Сумма чисел, полученных всевозможными перестановками цифр числа W, включая W, делится на 1353. Определить все возможные значения N, для которых такие числа существуют, и ввести их сумму.
Задачу решили:
67
всего попыток:
122
За один ход с числом делается такая операция: если число не делится на 3, то вычитаем 1, а если делится, то делим на 3. Сколько существует таких чисел, из которых ровно за 13 ходов получается единица?
Задачу решили:
70
всего попыток:
122
120 школьников выстроили друг за другом. Никакие две девочки не стоят ни дружка за дружкой, ни через семь человек. Найти максимальное количество девочек.
Задачу решили:
35
всего попыток:
40
Сколько существует натуральных n, 3<=n<=2013, таких, что найдётся множество различных натуральных чисел {a(1),a(2), ..., a(n)}, для любой перестановки {b(1),b(2), ..., b(n)} которых ни для каких индексов i<j<k не выполняется равенство b(k)=(b(i)+b(j))/2?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|