Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
42
У вас есть 8 гирек весом 1, 2, 3, ..., 8 грамм, которые выглядят одинаково, но вы знаете какая сколько весит. Сколько нужно взвешиваний, чтобы доказать, что вы знаете вес хотя бы одной гирьки.
Задачу решили:
41
всего попыток:
43
Для чисел a, b, c, d, e, f известно, что a*c*e ≠ 0 и |ax+b|+|cx+d|=|ex+f| для всех x. Найдите ad-bc.
Задачу решили:
54
всего попыток:
81
В равнобедренный треугольник вписана окружность, радиус которой равен 12. Ещё одна окружность, радиус которой равен 3, касается первой окружности и двух боковых сторон исходного треугольника. Найти периметр треугольника?
Задачу решили:
21
всего попыток:
46
Имеется 8 одинаковых по внешнему виду гирек весом 1, 2, 3, 4, 5, 6, 7, 8 грамм. Вам известно, какая гирька сколько весит и вы хотите убедить в этом приятеля. За какое минимальное количество взвешиваний на чашечных весах вы сможете доказать, что вы знаете веса всех 8-ми гирек?
Задачу решили:
63
всего попыток:
78
Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй. Какое наименьшее значение может быть у частного от деления первого произведения на второе?
Задачу решили:
51
всего попыток:
59
Найдите все x, при которых уравнение x2 + y2 + z2 + 2xyz = 1 (относительно z) имеет действительное решение при любом y. В ответ введите сумму модулей таких x.
Задачу решили:
14
всего попыток:
29
У вас 31 монетка, 2 из них фальшивые и имеют одинаковый вес (настоящие монетки также имеют одинаковый вес). Вы знаете какие именно и что они легче, а приятель знает, что фальшивых монеток ровно 2, но не знает легче они или тяжелей. За какое количество взвешиваний на чашечных весах без гирь и как вы сможете показать приятелю, что они легче и предъявить их?
Задачу решили:
38
всего попыток:
123
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
Задачу решили:
83
всего попыток:
84
Из четырёх неравенств 2x > 70, x < 100, 4x > 25 и x > 5 два истинны и два ложны. Найдите значение x, если известно, что оно целое.
Задачу решили:
67
всего попыток:
73
Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр 2016-го замечательного числа?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|