Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
64
Вокруг каждой черной клетки шахматной доски описана окружность. Какая доля шахматной доски покрыта полученными кругами? Ответ укажите в процентах, округлив до целого.
Задачу решили:
50
всего попыток:
57
Вершины квадрата PQRS, лежат на сторонах остроугольного треугольника ABC. Вершины P и Q лежат на стороне AB, вершина R лежит на стороне BC, а вершина S лежит на стороне AC. Длина стороны квадрата равна 4, а |AB|=8. Надите площадь треугольника?
Задачу решили:
33
всего попыток:
55
В прямоугольном треугольнике АВС (угол С - прямой) на гипотенузе отмечена точка К так,что отрезок СК делит биссектрису BD пополам. В треугольнике АСК все углы имеют целочисленные значения в градусах, два из которых являются нечетными числами и относятся друг другу в отношении 1:3. Найти значение угла ВАС в градусах.
Задачу решили:
57
всего попыток:
67
Найдите все целые решения уравнения (x-8)(x-10)=2y. В качестве ответа введите сумму всех возможных x.
Задачу решили:
58
всего попыток:
60
Найти сумму всех таких целых чисел n для которых n+125 и n+201 являются квадратами целых чисел.
Задачу решили:
31
всего попыток:
50
В равнобедренном (не равностороннем) треугольнике АВС (|АВ|=|ВС|) биссектрисы AF и BD пересекаются в точке О. Отношение площади треугольника AOD к площади BOF равно m:n, отношение |АВ|:|АС|=k. Найти k для наименьшего равнобедренного треугольника, если известно, что m, n и k являются квадратами натурального числа.
Задачу решили:
56
всего попыток:
58
p и q - простые числа такие, что pq+1=qp. Найдите наибольшее возможное произведение pq.
Задачу решили:
48
всего попыток:
57
В египетском треугольнике 3, 4, 5 из прямого угла высота делит его на два треугольника. Найти отношение периметра основного треугольника к сумме радиусов окружностей, вписанных во все три треугольника.
Задачу решили:
22
всего попыток:
42
В треугольнике с целочисленными сторонами две биссектрисы делятся точкой пересечения в отношениях m:1 и n:1 (m,n - целые). Найдите наибольшее значение K=(m+n). В ответ введите наименьший периметр треугольника для найденного K.
Задачу решили:
51
всего попыток:
60
Длины двух сторон треугольника равны 31 и 22. Медианы, проведенные к этим сторонам, перпендикулярны. Найти длину третьей стороны.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|