img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к задаче "Параллелограмм и две биссектрисы - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 42
Задача опубликована: 31.03.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

На окружности, описанной вокруг треугольника АВС, лежат точки K, L, M, отличные от вершин. При этом |AK|=|AB|, |BL|=|BC|, |CM|=|CA|. Найти наибольший угол треуголника KLM в градусах, если углы А и В треугольника АВС равны соответственно 74° и 38°.

Задачу решили: 19
всего попыток: 32
Задача опубликована: 07.04.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Окружность, построенная на стороне АС треугольника АВС как на диаметре, пересекает стороны АВ и ВС в точках D и E соответственно. Площадь треугольника BDE относится к площади треугольника АВС как 1:2, угол CDE равен 30°. Отрезки АЕ и CD пересекаются в точке О. Найти ВО, если |СЕ|=8.

Задачу решили: 10
всего попыток: 21
Задача опубликована: 12.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В выпуклом четырёхугольнике Q два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой.

Обозначим: m – длина стороны квадрата, равновеликого четырёхугольнику Q.

Для каждой точки M на периметре Q определим: f(M) – количество таких точек P на периметре Q, что |MP|=m. Например, для точки M, изображённой на рисунке:

Чудо-четырёхугольник - 4

 есть ровно две точки P1 и P2, расстояние которых до M равно m. Следовательно, для этой точки M имеет место f(M)=2.

Для каждого целого числа k определим функцию g(k) таким образом:
– Если есть конечное число точек M на периметре Q, для которых f(M)=k, то g(k) равно этому конечному числу.
– Если есть бесконечно много точек M на периметре Q, для которых f(M)=k, то определяем g(k)=100.

 Найдите сумму k*g(k) по всем k.

Задачу решили: 16
всего попыток: 31
Задача опубликована: 14.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В координатной плоскости Oxy расположена парабола y=x2. На ось Оy «нанизаны» 13 квадратов так, что две вершины каждого квадрата, лежат на оси параболы, а две другие принадлежат параболе. При этом размеры квадратов подобраны так, что нижние вершины квадратов имеют ординаты 0, 1, 2, 3, … , 12. На сколько частей границы этих квадратов делят внутреннюю часть параболы y=x2.

Квадраты в параболе

Например, на рисунке показано, что три первых квадрата делят внутреннюю часть параболы y=x2 на 13 частей.

Задачу решили: 13
всего попыток: 23
Задача опубликована: 24.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждый шаг итерации удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. На рисунке приведена кривая дракона после шести итераций.

Кривая дракона в прямоугольнике

Эта ломаная помещается в наименьший прямоугольник размером 7х11 и площадью 77. Какова площадь наименьшего прямоугольника, в котором помещает кривая дракона после 13 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона.

Подробней смотрите статью в Википедии «Кривая дракона».

Задачу решили: 23
всего попыток: 30
Задача опубликована: 26.04.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На катетах треугольника АВС, равных |АС|=3 и |ВС|=4, построили во внешнюю сторону треугольника правильные треугольники ACD, BCE. Найти квадрат площади треугольника KLM, вершины которого являются серединами отрезков АС, ВС, DE соответственно. 

Задачу решили: 20
всего попыток: 27
Задача опубликована: 01.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

Сколько существует прямоугольных параллелепипедов с целочисленными измерениями, у которых числовые значения площади поверхности и объема равны?

Задачу решили: 11
всего попыток: 20
Задача опубликована: 05.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Кривая дракона, петляя по плоскости, иногда образовывает замкнутые клетки, равные единичным квадратам. На рисунке, кривая дракона после шести итераций ограничивает 11 таких клеток.

Кривая дракона в прямоугольнике

Сколько таких клеток ограничивает кривая дракона после 13 итераций?

(подробней о кривой дракона см. задачу 2485).

Задачу решили: 25
всего попыток: 26
Задача опубликована: 08.05.23 11:33
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В тупоугольном равнобедренном треугольнике АВС с основанием АС с вершины А провели высоту AH, с точки Н провели перпендикуляры НМ и НК к сторонам АВ и АС соответственно. Найти длину отрезка МК, если известно, что |АВ|=5, |АС|=8.

Задачу решили: 23
всего попыток: 30
Задача опубликована: 12.05.23 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В квадрате ABCD построен треугольник АКМ, где вершина К лежит в середине стороны ВС, вершина М лежит на стороне CD. Найти отношение площадей треугольника АКМ и квадрата ABCD при наименьшей сумме длин сторон КМ и АМ. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.