img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 31
Задача опубликована: 15.01.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2727
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Чему равно наименьшее натуральное число, десятичная запись квадрата которого оканчивается на наибольшее количество различных цифр, составляющих арифметическую прогрессию?

Задачу решили: 6
всего попыток: 15
Задача опубликована: 22.01.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Найдите количество упорядоченных восьмёрок целых чисел A, B, C, D, E, F, G, H, каждое из которых в пределах от  -10  до  +10  включительно, для которых существуют такие  рациональные числа α, β, γ, δ, что выполняется равенство:

 (A + B√2 + C√3 + D√6) / (E + F√2 + G√3 + H√6) = α + β√2 + γ√3 +δ√6

Задачу решили: 23
всего попыток: 25
Задача опубликована: 29.01.25 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

(0! + 1*1! + 2*2! + 3*3! + ... + 2024*2024!)/(2024!) = ?

Задачу решили: 9
всего попыток: 10
Задача опубликована: 31.01.25 08:00
Прислал: vochfid img
Источник: Олимпиада в г. Рейкьявик
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Пусть величины a, b и c являются длинами сторон некоторого треугольника, а величины U и V определены на a, b и c следующим образом:
U3 = (a2 + bc)(b2 + ca)(c2 + ab),
V = (a2 + b2 + c2)/2.

Чему равно sign(U/V-1), где функция sign(x) равна 1, если x>0; равна 0, если x=0 и равна -1, если x<0.

Задачу решили: 17
всего попыток: 32
Задача опубликована: 03.02.25 08:00
Прислал: avilow img
Источник: Региональный этап 51-ой Всероссийской олимпиа...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: игрыimg

В каждой клетке доски 2х200 лежит по рублевой монете. Даша и Соня играют, делая ходы по очереди, начинает Даша. За один ход можно выбрать любую монету и передвинуть её: Даша двигает монету на соседнюю по диагонали клетку, Соня – на соседнюю по стороне. Если две монеты оказываются в одной клетке, одна из них тут же снимается с доски и достается Соне. Соня может остановить игру в любой момент и забрать все полученные деньги. Найдите, какой наибольший выигрыш она может получить, как бы ни играла Даша.

Задачу решили: 15
всего попыток: 90
Задача опубликована: 05.02.25 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Дано множество Т = {1935; 1936; 1939; 1951; 1953; 1957; 1963; 1971; 1981; 1983; 1984; 2013; 2016; 2023; 2025}. Назовем число N тетраэдровым, если и N правильными единичными треугольниками можно оклеить без наложений и пустот правильный тетраэдр. Сколько в множестве Т тетраэдровых чисел?

Задачу решили: 21
всего попыток: 22
Задача опубликована: 12.02.25 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

У математика 19 гирь с массой в килограммах ln2, ln3, ln4,....ln20 и точные двухчашечные весы. Какое наибольшее количество гирь он сможет использовать для уравновешивания на весах. 

Задачу решили: 13
всего попыток: 32
Задача опубликована: 19.02.25 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2749
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MikeNik (Mikhail Nikitkov)

Рассмотрим треугольную сетку точек в виде равностороннего треугольника, на стороне которого находятся 8 точек:

Фигура с поворотной симметрией

На следующем рисунке изображён пример фигуры, границей которой

Фигура с поворотной симметрией

является замкнутая ломаная, обладающая следующими свойствами:

  • Её стороны лежат на линиях сетки, а вершины – в её узлах.
  • Она проходит ровно по одному разу через каждый узел сетки.
  • Она имеет поворотную симметрию 3-го порядка.

Фигура в этом примере состоит из 34-х маленьких треугольников.

Найдите наибольшее количество маленьких треугольников, из которых может состоять фигура, граница которой является ломаная со всеми указанными свойствами, на треугольной сетке равностороннего треугольника с 15-ю точками на стороне.

Задачу решили: 13
всего попыток: 23
Задача опубликована: 21.02.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4.

Покрашенные точки на треугольной сетке

Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно.

Задачу решили: 11
всего попыток: 46
Задача опубликована: 26.02.25 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: makar243 (Сулейман Макаренко)

Рассмотрим открытый шар x2 + y2 + z2 < R2 и пересекающие его плоскости x=a, y=b, z=c, где a, b, c – все целые числа в пределах: |a|, |b|, |c| < R.

На сколько частей эти плоскости делят шар, если R=6?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.