Лента событий:
solomon добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
103
всего попыток:
259
На шахматной доске случайным образом расставлены 2 фигуры: король и ладья. С какой вероятностью король бьет ладью?
Задачу решили:
37
всего попыток:
310
В шахматной композиции (задачах) есть раздел сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций, полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.
Задачу решили:
10
всего попыток:
40
В шахматах существуют такие расстановки фигур, что любой игрок, при своём ходе, может поставить мат в 1 ход. Нас интересуют расстановки, обладающие этим свойством, с наименьшим количеством фигур на доске. В ответе укажите количество таких различных расстановок.
Задачу решили:
57
всего попыток:
94
Если шахматному коню запретить дважды вставать на одно и тоже поле, то можно найти такое начальное положение коня, что через три хода он будет запатован (у него не будет возможных ходов). Например, поместим коня на поле f2, тогда после ходов 1.Ke4 2.Kg3 3.Kh1 - конь запатован. А можно ли запатовать коня на бесконечной шахматной доске? В ответе укажите минимальное достаточное количество ходов для достижения цели.
Задачу решили:
45
всего попыток:
302
Петя с Васей изучили правила игры в шахматы и стали часто играть между собой. В одной из сыгранных партий у них случилась позиция, в которой присутствовали только короли, ладьи и слоны. А какое максимальное общее количество фигур могло быть на доске в этот момент.
Задачу решили:
23
всего попыток:
112
На шахматной доске 8x8 разместили максимально возможное количество ферзей каждого цвета, так что ни один черный ферзь не находится под ударом никакого из белых. Сколько всего ферзей находится на доске?
Задачу решили:
24
всего попыток:
30
n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13. Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ... Пусть a0=1, a1=6, a2=8. Найдите a111.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|