img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "REBUSы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 44
всего попыток: 170
Задача опубликована: 30.12.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Сколько существует таких целых чисел 0<n<90, что tg(n°) можно выразить с помощью конечного количества квадратных корней (например n=30, 45, 60)?

Задачу решили: 53
всего попыток: 69
Задача опубликована: 17.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника. Найдите наибольший из шести углов этих треугольников (в градусах).

Задачу решили: 25
всего попыток: 31
Задача опубликована: 07.12.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков:

|OA1|² = |OA0| • |OA2|.

Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков:

|OA2|² = |OA1| • |OA3|.

И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
Задачу решили: 45
всего попыток: 59
Задача опубликована: 05.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В треугольнике ABC sin A : sin B : sin C = 5 : 7 : 9. Найдите cos (A + B).

Задачу решили: 39
всего попыток: 49
Задача опубликована: 09.10.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

sin10x+cos10x=11/36. Найдите sin12x+cos12x.

Задачу решили: 41
всего попыток: 41
Задача опубликована: 25.03.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На горизонтальной плоскости из трех точек отстоящих от основания антенны на 100, 200 и 300 м, углы, под которыми она видна в сумме составляют 90°. Определите высоту антенны.

Задачу решили: 41
всего попыток: 43
Задача опубликована: 25.05.20 08:00
Прислал: admin img
Источник: Польская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

В треугольнике углы A, B и C такие, что cos3A+cos3B+cos3C=1. Найти наибольший угол треугольника в градусах.

Задачу решили: 28
всего попыток: 36
Задача опубликована: 17.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mosk_

Для угла x и чисел a, b, c и cos x верно соотношение acos2x+bcosx+c=0. Составьте квадратичное соотношение с числами a, b и c для cos 2x. В качестве ответа введите сумму коэффициентов таких, что наибольший общий делитель их был равен 1 для a = 12, b = 8, с = -3..

Задачу решили: 29
всего попыток: 43
Задача опубликована: 28.08.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.

Задачу решили: 25
всего попыток: 65
Задача опубликована: 29.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Найдите количество действительных решений уравнения x = 1964 sin x - 189.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.