img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Vkorsukov добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 77
всего попыток: 80
Задача опубликована: 09.09.13 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найти максимальное значение x+y, если известно, что y(x+y)2=9 и y(x3-y3)=7.

Задачу решили: 45
всего попыток: 196
Задача опубликована: 13.09.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: levvol

Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол.

Сколько в этом множестве пар подобных парабол?

Задачу решили: 41
всего попыток: 99
Задача опубликована: 16.09.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
баллы: 100

В конечной последовательности, состоящей из натуральных чисел, встречается ровно 2006 различных чисел. Известно, что если из какого-нибудь члена этой последовательности вычесть 1, то в полученной последовательности будет встречаться не менее 2006 различных чисел. Найдите минимальную возможную сумму членов исходной последовательности

Задачу решили: 48
всего попыток: 77
Задача опубликована: 27.09.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Hasmik33

Рассмотрим вещественные числа:

t > 0

x = (1 + 1/t)t

y = (1 + 1/t)t+1

Чему равна точная нижняя граница множества значений выражения xy ?

Округлите ответ с точностью 2-х знаков после запятой.

Задачу решили: 89
всего попыток: 99
Задача опубликована: 11.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2007
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Про функцию f(x) известно, что f(1) = 1, и для любых x, y выполнено тождество f(x+y) = 2xf(y)+3yf(x). Найдите f(15).

Задачу решили: 51
всего попыток: 314
Задача опубликована: 20.11.13 08:00
Прислал: ludwig51 img
Вес: 1
сложность: 3 img
баллы: 100

M сообщает P и S , что имеются два натуральных числа,
больших единицы, а их сумма меньше 100.
M: "Произведение этих чисел равно...(сообщает на ухо P),
а сумма этих чисел... (сообщает на ухо S). Чему равны числа?" 
После этого произошёл диалог:
(P): Не могу сказать, что это за числа.        
(S): А я знал, что Вы этого не сможете.       
(P): Тогда я знаю эти числа.                       
(S): Тогда и я их знаю.

Чему равна максимальная сумма чисел?

Задачу решили: 59
всего попыток: 62
Задача опубликована: 25.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: sacred_shaved_... (Никита Гладков)

Найдите максимальное значение f(1) если  f: Z ? Z такая, что для любых целых чисел х и у выполнено равенство f(f(x)+y+1) = x+f(y)+1.

Задачу решили: 67
всего попыток: 164
Задача опубликована: 27.01.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Если x=0,99999999999999999999 (двадцать девяток после запятой), то чему равна целая часть значения выражения:

x/1 + x2/2 + x3/3 + . . . ?

Задачу решили: 29
всего попыток: 133
Задача опубликована: 05.02.14 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Sam777e

Определите количество пар натуральных чисел x и y, для которых последовательность

zn=(xn+yn)/20n  не является возрастающей

Задачу решили: 55
всего попыток: 69
Задача опубликована: 24.02.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите f(2012) если f: NxN такая, что f(m–n+f(n)) = f(m)+f(n) при всех m, n из N.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.