Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
47
всего попыток:
116
Тройка действительных чисел (x, y, z) удовлетворяет условию x2 + y2 + z2 = 1. Пусть максимальное значение, которое принимает выражение (x2 - y2)(y2 - z2)(z2 - x2), равно M. Найдите 1/M2.
Задачу решили:
15
всего попыток:
181
Найти количество целых чисел n (2 ≤ n ≤ 100) для которых существует многочлен p(x) с действительными коэффициентами и степени меньшей n такой, что для всех целых x, p(x) является целым числом, тогда и только тогда, если x не кратно n.
Задачу решили:
24
всего попыток:
116
Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
37
всего попыток:
58
Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.
Задачу решили:
30
всего попыток:
60
Пусть f(x)=1/(x-1)+1/(x-2)+...+1/(x-100) и x1, x2, ..., xn - нули функции в каком-то порядке. Найдите максимум выражения ([x1]-[x2]+[x3]-[x4]+...±[xn])/(n+1), где [x] - целая часть x.
Задачу решили:
69
всего попыток:
82
Найти минимум функции f(x)=x3(x3+1)(x3+2)(x3+3).
Задачу решили:
41
всего попыток:
63
Пусть A - матрица 16x16 с элементами aij=НОД(i,j) для 1≤i,j≤16. Найдите ее определитель.
Задачу решили:
40
всего попыток:
54
Пусть Q(x)=x3+6. Определим последовательность полиномов Pn(x): P1(x)=Q(x), Pn+1(x)=Q(Pn(x)), n=1,2,... Найти сумму всех действительных решений уравнения P2014(x)=x.
Задачу решили:
35
всего попыток:
87
Пусть целые положительные числа a ≥ b такие, что (a+1)/b + (b+1)/a - тоже целое. Найдите сумму всех таких a меньших 1000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|