img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Vkorsukov добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 50
всего попыток: 60
Задача опубликована: 26.12.18 08:00
Прислал: avilow img
Источник: из личной коллекции задач
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Через начало координат к параболе у=2х2+19х+2019 проведены две касательные. Найдите сумму угловых коэффициентов этих касательных.

Задачу решили: 44
всего попыток: 47
Задача опубликована: 13.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке.

Квадраты и парабола

Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.

Задачу решили: 17
всего попыток: 96
Задача опубликована: 10.05.19 08:00
Прислал: avilow img
Источник: Книга "Математика, ЕГЭ-2009" (Легион)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Sam777e

Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.

Задачу решили: 33
всего попыток: 58
Задача опубликована: 19.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найти количество матриц удовлетворяющих условию:

\begin{pmatrix}
a&b \\
c&d\end{pmatrix}^2=\begin{pmatrix}
c&a \\
d&b\end{pmatrix}, где a, b, c и d - рациональные числа.

Задачу решили: 13
всего попыток: 17
Задача опубликована: 02.08.19 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В ряду 111 ... 111 записаны 2018 единиц. Какое наибольшее количество знаков "+" или "-" можно поставить в этом ряду (не более одного знака между каждой группой единиц), чтобы полученное выражение давало в итоге 8102?

Задачу решили: 20
всего попыток: 44
Задача опубликована: 22.11.19 08:00
Прислал: admin img
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Пусть a1, a2, ..., a2019 неотрицательные действительные числа, сумма которых равна 1. Найдите максимальное значение суммы всех произведений aiaj для всех различных i и j, таких что i|j (i - делитель j).

Задачу решили: 28
всего попыток: 53
Задача опубликована: 20.01.20 08:00
Прислал: TALMON img
Источник: Journal of Recreational Mathematics
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Назовём натуральное число интересным, если его запись в десятичной системе счисления состоит из чётного количества цифр и его «левая половина» равна его «правой половине». Например, 2020 - это интересное число. Найдите наименьшее интересное число, являющееся квадратом целого числа.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 27.01.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Вовочка отпилил от каждой ножки табуретки по кусочку. После этого табуретка стала стоять наклонно, но по-прежнему касалась пола всеми ножками. Длины трёх отпиленных кусочков 7, 9 и 13. Найдите все возможные длины четвёртого кусочка и укажите их сумму. (Сиденье табуретки - квадратное, ножки - перпендикулярны сиденью и можно считать бесконечно тонкими, т.е. касаются пола одной точкой.)

Задачу решили: 45
всего попыток: 50
Задача опубликована: 29.01.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите наибольшее значение определителя матрицы четвертого порядка, у которой на главной диагонали записаны числа 1, 2, 3 и 4, а все остальные числа одинаковы. Определитель изображен на рисунке.

Задачу решили: 27
всего попыток: 53
Задача опубликована: 03.02.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Трехчлены x2+ax+b и x2+ax-b, где a и b - натуральные числа и НОД(a,b)=1, приводимы в целых числах (т. е. могут быть представлены в виде произведения двучленов с целыми коэффициентами). Найти минимальное значение b, для которого существуют два различных значения a. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.