Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
24
В правильной треугольной призме ABCA1B1C1 на ребрах AC и A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.
Задачу решили:
20
всего попыток:
32
В куб ABCDA1B1C1D1 вписан правильный тетраэдр D1AB1C. Куб, вместе c тетраэдром, вращается вокруг диагонали BD1 куба. При этом образуются два тела вращения: одно задается вращением куба, другое – вращением тетраэдра. Найдите объёмы этих двух тел вращения, и в ответе укажите отношение меньшего объёма к большему.
Задачу решили:
9
всего попыток:
19
«Докажем», что любое число ε>0 оно не меньше 1. Естественно, это «доказательство» содержит ошибку. Найдите в каком утверждении ошибка. Пусть ε - любое положительное число. 1. Как известно, множество рациональных чисел в отрезке [0, 1] счётно и всюду плотно. 2. Пронумеруем его элементы: r1, r2, r3, ... 3. Построим вокруг них окрестности: mn = (rn – ε/2n+1, rn + ε/2n+1), n=1, 2, 3, ... 4. Рассмотрим множество U – объединение всех этих окрестностей. Его мера m(U) меньше или равна сумме мер составляющих: Σm(mn) = ε. 5. Множество U, как объединение открытых множеств, также является открытым множеством. 6. Как открытое множество на числовой прямой, множество U может быть представимо как объединение конечного или счётного множества взаимно непересекающихся интервалов u1, u2, u3, ... 7. Рассмотрим какие-нибудь два соседних из этих интервалов (т.е. любой один из них + ближайший к нему с той или другой стороны). Они либо лежат вплотную друг к другу, т.е. имеют общий конец, либо между ними есть зазор. 8. Если между ними есть зазор, это означает, что первоначально не были охвачены все рациональные числа. Следовательно, остаётся только вариант общего конца. 9. Таким образом, множество U покрывает весь отрезок [0, 1] кроме не больше чем счётное множество общих концов, имеющее меру 0. 10. Следовательно, мера множества U не меньше 1, и ε ≥ 1.
Задачу решили:
22
всего попыток:
56
В квадратной таблице 360х360 строки и столбцы «пронумерованы» числами от 1° до 360°. В каждой ячейке этой таблицы записано число, равное произведению синуса «номера» строки на косинус «номера» столбца. Сколько рациональных чисел в этой таблице?
Задачу решили:
4
всего попыток:
47
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
14
всего попыток:
19
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. На рисунке приведен (для иллюстрации) равносторонний треугольник со стороной 7, в который вписаны 6 меньших равносторонних треугольников. Обозначим: Tk – количество внутренних точек пересечения отрезков (сторон вписанных треугольников), через которые проходят ровно k отрезков. Найдите количество частей, на которые разделён исходный треугольник, если известно, что T2 = 2996676, T3 = 72 и T4 = 18.
Задачу решили:
21
всего попыток:
36
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000. На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.
Задачу решили:
13
всего попыток:
29
Правильный пятиугольник имеет сторону длины n, n∈N. Все стороны пятиугольника разделены точками на единичные отрезки. В этот пятиугольник вписаны n-1 правильных пятиугольников, все вершины которых находятся в точках деления. На рисунке приведен правильный пятиугольник со стороной 7, в который вписаны 6 меньших правильных пятиугольников. Найдите количество таких n (1<n<200), для которых количество полученных частей НЕ равно 5*(n-1)2+1.
Задачу решили:
19
всего попыток:
25
Дана функциональная последовательность fn(x): Найти предельную функцию g(x) при n стремящемся к бесконечности.
Задачу решили:
22
всего попыток:
80
Есть 4 конечных множества размера 20 каждый. Максимальный размер пересечения каких-либо двух из них равен 10. Какой минимальный размер объединения всех четырёх?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|