img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Vkorsukov добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 8
всего попыток: 13
Задача опубликована: 20.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.

Задачу решили: 9
всего попыток: 10
Задача опубликована: 22.03.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.

Задачу решили: 7
всего попыток: 15
Задача опубликована: 05.04.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100

Определим g(m) как наименьшее натуральное число, которое встречается ровно в m пифагоровых тройках. Например, g(1)=3 и g(2)=5, т.к. числа 1 и 2 не встречаются ни в одной пифагоровой тройке, каждое из чисел 3 и 4 встречается ровно в одной пифагоровой тройке, а число 5 – ровно в двух:
32 + 42 = 52
52 + 122 = 132

Найдите наименьшее натуральное число m, для которого g(m)>12345.

Задачу решили: 11
всего попыток: 16
Задача опубликована: 10.04.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.

Задачу решили: 19
всего попыток: 39
Задача опубликована: 19.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Сколько действительных корней имеет уравнение 100 cos=√x?

Задачу решили: 16
всего попыток: 59
Задача опубликована: 10.05.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Сколько действительных корней имеет уравнение 443113/25000 * cos x = √x?

Задачу решили: 11
всего попыток: 14
Задача опубликована: 31.05.23 08:00
Прислал: TALMON img
Источник: Соавтор идеи: Sam777e.
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010.

Клетки кривой дракона - 3

Эта ломаная образует 15 одноклеточных квадратиков. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Найдите сумму всех различных количеств квадратиков, которые они образуют.

Задачу решили: 11
всего попыток: 12
Задача опубликована: 02.06.23 08:00
Прислал: TALMON img
Источник: Соавтор идеи: Sam777e
Вес: 1
сложность: 1 img
баллы: 100

Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010.

Кривая дракона в прямоугольнике - 3

Эта ломаная помещается в наименьший прямоугольник размером 9х7 и площадью 63. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Каждая из них помещается в некоторый наименьший прямоугольник. Найдите сумму всех различных площадей этих прямоугольников.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 28.07.23 08:00
Прислал: TALMON img
Источник: По мотивам предыдущих задач о стаканах. Соавт...
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске).

Разрешена такая операция: если на каких-то двух досках написаны числа a и b, ab, то можно их заменить на числа 2a и b-a.

Какое максимальное количество чисел на досках можно обнулить посредством таких операций?

Задачу решили: 19
всего попыток: 33
Задача опубликована: 16.08.23 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

На экзамене два преподавателя принимают экзамен у студентов. Один принимает только теорию, а второй только практику. Время затрачиваемое каждым преподавателем на прием теории, либо практики одинаковое. Через равные промежутки в аудиторию заходят по два студента, сдают экзамен (один из них теорию, второй практику), потом уходят, заходят следующие так далее. Т.е. каждый студент должен зайти в аудиторию два раза. Перед экзаменом студенты случайным образом разыгрывают между собой номера в очереди к каждому преподавателям. Найдите вероятность того, что полученное таким образом расписание для 8 студентов не сможет быть выполнено.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.