img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 48
всего попыток: 129
Задача опубликована: 07.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

n = 3 × 77. Найдите наибольший общий делитель 7n - 1 и 7n + 4949.

Задачу решили: 55
всего попыток: 75
Задача опубликована: 10.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точки M и N делят сторону BC треугольника ABC на три равные части (|BM| = |MN| = |NC|). Точка F — середина отрезка AN. Прямая, проходящая через F и параллельная AC, пересекает AB в точке D, а AM — в точке E. Найдите отношение |EF|/|ED|.

Задачу решили: 28
всего попыток: 210
Задача опубликована: 12.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: marzelik

Есть 1000 белых кубиков со стороной 1. Пушистая девочка Оля хочет сложить из них всех какой-нибудь параллелепипед, белый снаружи. Какое наименьшее число граней должен испачкать проказник Федя, чтобы ей помешать?

Задачу решили: 38
всего попыток: 41
Задача опубликована: 14.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg

В остроугольном треугольнике ABC на стороне BC как на диаметре построили окружность O. Через точку P на стороне AB перпендикулярно AB провели прямую, пересекающую AC в точке Q, причем |AP| = 10 и площадь треугольника APQ в 4 раза меньше площади треугольника ABC. Найдите длину отрезка касательной AT, проведенной из точки A к окружности O.

Задачу решили: 65
всего попыток: 77
Задача опубликована: 17.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Последовательность x1, x2, x3,…, задана формулой xn = 2n(n+1). Какое наибольшее количество подряд идущих её членов могут быть точными квадратами?

Задачу решили: 46
всего попыток: 77
Задача опубликована: 19.03.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дан треугольник ABC.

Радиус окружности, касающей стороны AB и продолжений сторон AC и BC равен 78.

Радиус окружности, касающей стороны AC и продолжений сторон AB и BC равен 91.

Радиус окружности, касающей стороны BC и продолжений сторон AB и AC равен 102.

Чему равна площадь треугольника ABC?

Задачу решили: 57
всего попыток: 139
Задача опубликована: 21.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: snape

Действительные числа a, b, c удовлетворяют условию ab + bc + ac = 7(a + b + c) - 30. Найдите минимум выражения a2 + b2 + c2.

Задачу решили: 40
всего попыток: 52
Задача опубликована: 24.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Венцом последовательности назовем число, полученное так: сначала вычисляем модуль разности первого и второго членов, затем модуль разности этого числа и третьего члена и т.д. до последнего члена. Пусть у нас все 28 костяшек домино сложены в цепочку по правилам домино, то есть костяшки прикладываются половинками с одинаковыми числами. Числа на половинках образуют последовательность из 56 членов. Известно, что она начинается с пятерки. Чему равен венец этой последовательности?

Задачу решили: 36
всего попыток: 112
Задача опубликована: 26.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Из 20 сидящих за круглым столом людей выбирают 8. Найдите количество способов сделать это так, чтобы никакие двое выбранных не сидели рядом.

Задачу решили: 62
всего попыток: 69
Задача опубликована: 28.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Функция f определена на множестве всех натуральных чисел, принимает значения в множестве натуральных чисел, и одно из её значений равно 1. Кроме того известно, что для любого натурального n выполнено равенство f(n+f(n)) = f(n). Найдите f(2014).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.