Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
63
Рассмотрим все пары ненулевых целых чисел (a, b) таких, что уравнение (ax-b)2+(bx-a)2=x имеет хотя бы одно целое решение. Найдите сумму всех решений уравнения.
Задачу решили:
46
всего попыток:
78
В остроугольном треугольнике, площадь которого равна 1, с каждой вершины на противоположные стороны опущены чевианы. Каждая из них делит сторону в соотношении 1:4. Эти чевианы (отрезки) внутри треугольника образовали треугольник. Найдите площадь этого треугольника.
Задачу решили:
50
всего попыток:
96
Найти количество упорядоченных троек целых положительных чисел a ≤ b ≤ c таких, что
Задачу решили:
42
всего попыток:
277
Про натуральное число, в десятичной записи которого все цифры различны, известно, что произведение нескольких подряд стоящих начальных цифр равно произведению остальных его цифр. Найти количество чисел с таким свойством.
Задачу решили:
29
всего попыток:
116
Чему равна сумма всех целых корней уравнения 1/х + 1/у = 1/999999? Вот небольшая часть этой суммы ... + 2*999999 + 2*999999 + ... для пары-решения х = у = 2*999999.
Задачу решили:
47
всего попыток:
70
Пусть p и q простые числа, а r - целое, и такие, что p(p+3)+q(q+3)=r(r+3). Найдите сумму всех возможных значений p.
Задачу решили:
51
всего попыток:
81
Известно: a+b+c+d=0 Найти 1/a+1/b+1/c+1/d.
Задачу решили:
47
всего попыток:
67
х1, x2, x3, x4, x5 - действительные числа такие, что
Задачу решили:
47
всего попыток:
55
Найдите наибольшее целое число n < 1000 такое, что существуют 2 неотрицательных целых числа, удовлетворяющих свойству: n = (a2+b2)/(ab-1).
Задачу решили:
69
всего попыток:
99
Пусть a+b+c=1 и a, b, c >0. Найдите минимум a2+2b2+c2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|