Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
72
Найдите количество действительных решений уравнения:
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
49
всего попыток:
103
Для чисел 1/2 ≤ a, b, c, d ≤ 2 известно, что abcd=1. Найти максимум (a+1/b)(b+1/c)(c+1/d)(d+1/a).
Задачу решили:
71
всего попыток:
74
Пость m и n - натуральные числа такие, что m2-n!=2016. Найти максимум m+n.
Задачу решили:
39
всего попыток:
64
Пусть a > b > c - целые длины сторон треугольника такие, что
Задачу решили:
19
всего попыток:
96
Найдите максимальное целое число n такое, что существуют n действительных чисел x1, x2, ..., xn которые удовлетворяют неравенству для всех 1 ≤ i < j ≤ n:
Задачу решили:
43
всего попыток:
69
Найти сумму всех целых чисел n таких, что
Задачу решили:
36
всего попыток:
179
12 различными натуральными числами заполнили таблицу 4x5. Любые два соседа (числа в клетках с общей стороной) имеют общий делитель больше 1. Если N - наибольшее число в таблице, найти наименьшее возможное значение N.
Задачу решили:
44
всего попыток:
128
Найдите количество различных пар натуральных чисел m и n таких, что 1/m + 1/n = 1/100000.
Задачу решили:
56
всего попыток:
74
На доске написаны n последовательных натуральных чисел, начиная с 1. Когда было стерто одно число, то оказалось, что среднее арифметическое стало равным 35 7/17. Какое число стерли?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|