Лента событий:
TALMON добавил комментарий к задаче "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
97
всего попыток:
109
Периметр одного треугольника равен 25, второго - 35, шестиугольной звезды - 50. Чему равен периметр зеленого шестиугольника?
Задачу решили:
55
всего попыток:
83
В левом нижнем углу клетчатой доски n x n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов за которое он может дойти до правого нижнего угла. Найдите n.
Задачу решили:
43
всего попыток:
81
В треугольнике ABC размещен квадрат DEFG так, что вершины D и E являются серединами сторон AB и BC, а точки F и G находятся на стороне AC. Найдите максимально возможный острый угол между прямыми BF и CD (в градусах).
Задачу решили:
37
всего попыток:
101
Функция Эйлера φ(n) определена для каждого натурального числа n как количество натуральных чисел, непревосходящих n, взаимно простых с n. Найдите сумму всех натуральных чисел n, для которых φ(n)=128.
Задачу решили:
29
всего попыток:
44
Найти сумму всех таких целых чисел b, что уравнение [x2]-2012x+b=0 имеет нечетное число корней, [x] - целая часть числа x.
Задачу решили:
41
всего попыток:
68
Найти количество целых неотрицательных решений уравнения [x/n]=[x/(n+1)], n - натуральное, [x] - целая часть x. В ответе укажите количество решений для n = 1000.
Задачу решили:
41
всего попыток:
86
Пусть a, b, c, d - натуральные числа. Найти минимум выражения
Задачу решили:
62
всего попыток:
67
Найти сумму всех натуральных чисел n таких, что сумма цифр числа 5n равна 2n.
Задачу решили:
21
всего попыток:
105
Найти количество действительных решений уравнения x3-[x3]-{x}3=0 для 1≤x<2015, где [x] и {x} - целая и дробная части числа x.
Задачу решили:
32
всего попыток:
67
Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|