img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 99
всего попыток: 123
Задача опубликована: 16.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?

Задачу решили: 204
всего попыток: 297
Задача опубликована: 21.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Все жители деревни Каспениада выстроились в квадрат и похлопали в ладоши. Затем перестроились в прямоугольник так, что шеренг стало на 7 больше, чем было в квадрате. Сколько жителей в Каспениаде?

Задачу решили: 79
всего попыток: 153
Задача опубликована: 26.07.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n213n+47, если n пробегает все целые числа от −20102010 до 20102010?

Задачу решили: 68
всего попыток: 156
Задача опубликована: 28.07.10 08:00
Прислала: Marishka24 img
Источник: Межвузовская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.

Задачу решили: 46
всего попыток: 57
Задача опубликована: 06.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?

(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
Задачу решили: 128
всего попыток: 353
Задача опубликована: 09.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Я написала в тетрадке 12 дробей: 1/1, 1/2, ..., 1/12. Какое наименьшее число дробей нужно стереть, чтобы, расставив перед остальными знаки "плюс" и "минус", получить нуль?

Задачу решили: 100
всего попыток: 168
Задача опубликована: 18.08.10 00:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Отрезок шоссе между пунктами А1 и А11 имеет протяженность, равную 56 километрам. Вдоль этого шоссе расположены ещё 9 пунктов: А2, А3, ..., А10 (именно в таком порядке). Любые два соседних участка шоссе (вместе взятых) не длиннее 12 километров. А любые три — не короче 17. Сколько километров составляет расстояние от А2 до А7?

Задачу решили: 85
всего попыток: 191
Задача опубликована: 20.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Синоптик Сеня Невезучий утверждает, что на протяжении одного года шесть раз первый вторник месяца был солнечным, а первый вторник после первого понедельника того же месяца — пасмурным. Какое наибольшее число раз такое действительно могло случиться в течение одного года?

Задачу решили: 182
всего попыток: 220
Задача опубликована: 25.08.10 08:00
Прислал: Busy_Beaver img
Источник: Олимпиада им. А.М.Красникова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Между двумя одинаковыми чётными двузначными числами вставили число, вдвое меньшее каждого из них. В результате получился квадрат m2 некоторого натурального числа m. Найдите m.

Задачу решили: 137
всего попыток: 169
Задача опубликована: 01.09.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Встретились три гномика. У каждого на майке написано двузначное натуральное число. Каждый из гномиков заметил, что если в его числе поменять местами цифры, то получится сумма чисел у двух других гномиков. Чему равна сумма чисел у всех трёх гномиков?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.