img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к задаче "Целочисленные точки на эллипсах - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 155
Задача опубликована: 18.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из любого города можно проехать по дорогам в любой другой. Дорога соединяет между собой два города. За какое минимальное количество пересадок можно гарантированно добраться из одного города в любой другой?

Задачу решили: 60
всего попыток: 74
Задача опубликована: 21.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Kf_GoldFish

Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков меда и 22 банки сгущенного молока, причем горшок меда он съедал за 2 минуты, а банку молока — за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увел Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок меда за 5 минут, а банку молока за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы.

Чему равно это время? (Банку молока и горшок меда можно делить на любые части).

Задачу решили: 47
всего попыток: 71
Задача опубликована: 23.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Sam777e

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).

Задачу решили: 43
всего попыток: 51
Задача опубликована: 25.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: plush

Найдите максимальную сумму всех простых чисел p, q, r и s таких, что их сумма — простое число. А числа p2 + qs и p2 + qr — квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.) 

Задачу решили: 47
всего попыток: 49
Задача опубликована: 28.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и P(19) = P(94) = 1994.

Задачу решили: 55
всего попыток: 60
Задача опубликована: 30.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найдите сумму всех простых p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).

Задачу решили: 38
всего попыток: 53
Задача опубликована: 01.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найти все такие f(x), что (x-1)f((x+1)/(x-1))-f(x)=x для x≠1.

В ответе укажите сумму значений этих функций в точке x=2016

Задачу решили: 41
всего попыток: 57
Задача опубликована: 04.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. 

За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

Задачу решили: 44
всего попыток: 49
Задача опубликована: 06.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Числовая последовательность a0, a1, a2, ... такова, что при всех неотрицательных m и n (m >= n) выполняется соотношение

am+n + am−n = 1/2(a2m + a2n).

Найдите a2016, если a1 = 1.

Задачу решили: 43
всего попыток: 53
Задача опубликована: 08.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: azat

Рассматриваются всевозможные квадратичные функции f(x) = ax2 + bx + c, такие, что a < b и f(x) >= 0 для всех x. Какое наименьшее значение может принимать выражение (a + b + c)/(b − a)?

 
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.