img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 27
всего попыток: 276
Задача опубликована: 10.02.17 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Дано, выпуклый четырёхугольник ABCD имеет целочисленную площадь, а длины его сторон AB, BC, CD, DA равны 11, 5, 10, 14, соответственно. Сколько различных значений может принимать площадь таких четырёхугольников?

Задачу решили: 30
всего попыток: 51
Задача опубликована: 13.02.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Найдите наименьшее натуральное число n, такое, что каждый из 5-и последовательных чисел n, n+1, n+2, n+3, n+4 делится на квадрат простого числа.

Задачу решили: 21
всего попыток: 92
Задача опубликована: 15.02.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Bulat (Миха Булатович)

Известно, что для положительных действительных чисел  x1+x2+...+xn=n. Найти наибольшее n такое, что всегда x12+x22+...+xn2 ≤ 1/x12+1/x22+...+1/xn2.

Задачу решили: 28
всего попыток: 29
Задача опубликована: 17.02.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3. 

Задачу решили: 43
всего попыток: 55
Задача опубликована: 20.02.17 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100

В четырёх прямоугольниках с соотношением сторон (отношение длины к ширине) 3, 5, 7 и 8 соответственно, проведены диагонали. Найти сумму всех четырёх острых углов пересечения диагоналей в этих прямоугольниках в градусах.

Задачу решили: 56
всего попыток: 67
Задача опубликована: 22.02.17 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Bulat (Миха Булатович)

В восточном городе 2/3 мужчин состоят в браке и 1/2 женщин замужем. Причем мужчины имеют по одной, две, три и четыре жены поровну. Какова доля,состоящих в браке,относительно всего населения города. Ответ представить в виде рациональной дроби. 

Задачу решили: 46
всего попыток: 92
Задача опубликована: 24.02.17 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Какое число находится на третьем месте в упорядоченном множестве M таких натуральных чисел, делящихся на 225, в записи которых использованы только цифры 0 и 8?

Задачу решили: 15
всего попыток: 17
Задача опубликована: 27.02.17 08:00
Прислал: leonid img
Источник: XLIII Московская областная математическая оли...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется таблица 1000 х 1000, все клетки которой изначально пусты. Два игрока-терминатора соревнуются в следующей игре. За один ход можно записать в любую незанятую клетку таблицы любое натуральное число от 1 до 106, если такого числа еще нет в таблице. Игроки записывают числа, пока не заполнят всю таблицу. Пусть А количество строк, в каждой из которых сумма чисел делится нацело на 106, а В – количество столбцов, в каждом из которых сумма чисел делится нацело на 106. Первый игрок выигрывает, если А > В, иначе выигрывает второй игрок. Кто из игроков сможет выиграть независимо от игры соперника? (Укажите номер победителя: 1 или 2.)

Задачу решили: 58
всего попыток: 91
Задача опубликована: 01.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найти наименьшее число, состояще из цифр от 1 до 9 (каждая цифра входит 1 раз), которое делится нацело на 99.

Задачу решили: 35
всего попыток: 108
Задача опубликована: 03.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Marutand

Друзья пришли в гости и их рассадили по столам. За половиной столов сидело по 5 друзей, в за второй половиной столов по x. Когда всех друзей опросили сколько за столом сидит их друзей, то в среднем получилось 16. Найдите x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.