Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
78
всего попыток:
189
Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.
Задачу решили:
145
всего попыток:
232
Какое наибольшее количество квадратов натуральных чисел можно написать, чтобы все написанные цифры были разными?
Задачу решили:
78
всего попыток:
161
Найдите минимальное значение наименьшего общего кратного двадцати (не обязательно различных) натуральных чисел с суммой 801?
Задачу решили:
91
всего попыток:
125
В чемпионате мира по тыквондо 18 спортсменов состязались в разбивании тыквы одним ударом на максимальное число частей. Все участники показали различные результаты, причём у чемпиона получилось втрое больше частей, чем у занявшего 10-е место, но меньше, чем у занявших 9-е и 10-е места, вместе взятых. Какого результата добился чемпион, если общее количество частей у всех участников оказалось меньше 270? Примечание: неразбитая тыква считается одной частью!
Задачу решили:
113
всего попыток:
290
Девочка подошла к переходу через улицу в тот момент, когда загорелся жёлтый свет, и загляделась на работу светофора. По своим часам она заметила, что красный свет горит в полтора раза меньше времени, чем зелёный, а жёлтый — в четыре раза меньше, чем красный. После того, как в восемнадцатый раз горел жёлтый свет, зажёгся зелёный, и девочка, простояв 17 минут, стала переходить улицу. Сколько секунд горит жёлтый свет?
Задачу решили:
171
всего попыток:
282
От трёхзначного числа отняли сумму кубов его цифр. Какой наибольший результат мог при этом получиться?
Задачу решили:
95
всего попыток:
157
Представим сумму как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?
Задачу решили:
269
всего попыток:
301
К простому числу p прибавили 400 и получили квадрат натурального числа. Найдите p.
Задачу решили:
199
всего попыток:
325
Маша и Саша лакомятся изюмом. Маша съедает одну изюминку, Саша — 2, Маша — 3, Саша — 4 и т.д. (Следующий берёт на одну изюминку больше.) Сколько всего было изюминок, если Маша съела ровно 200?
Задачу решили:
40
всего попыток:
236
Квадрат N×N (N≥1000 — натуральное число) разбит на k квадратов, наименьший из которых имеет сторону 1. Найдите минимально возможное k.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|