Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
63
Найдите наименьшее натуральное число для которого n50+(n+1)50>(n+2)50.
Задачу решили:
35
всего попыток:
49
Найти последние 4 цифры наименьшего натурального числа n такого, что все числа n/1, (n-1)/2, (n-2)/3, ..., (n-2016)/2017 - целые.
Задачу решили:
73
всего попыток:
90
Площадь правильного шестиугольника равна 1. Найти площадь закрашенной части.
Задачу решили:
36
всего попыток:
40
Натуральные числа k, m, n больше 1 и взаимно просты, при этом kmn=10(k+m+n). Найти минимальное значение km+mn+nk.
Задачу решили:
30
всего попыток:
122
Найти максимальное значение выражения a/c+b/d+c/a+d/b, где a, b, c, d различные и a/b+b/c+c/d+d/a=4 и ac=bd.
Задачу решили:
24
всего попыток:
34
Имеются 4 внешне неотличимые монеты весом 1, 2, 3 и 4 грамма. За какое минимальное количество взвешиваний на чашечных весах без гирь можно определить вес каждой монетки?
Задачу решили:
47
всего попыток:
92
Найти целую часть произведения (2/1)×(5/4)×(8/7)×(11/10)×...×(2015/2014)×(2018/2017).
Задачу решили:
55
всего попыток:
60
Найти минимальный радиус круга, в котором можно поместить без наложений 7 кругов радиуса 1?
Задачу решили:
37
всего попыток:
55
В компании из 9 мушкетёров некоторые поссорились и вызвали друг друга на дуэль. Известно, что среди них нет трех таких, что все они должны драться друг с другом. Какое максимальное число мушкетёров при любой комбинации гарантированно не поссорятся друг с другом.
Задачу решили:
25
всего попыток:
83
У трех студентов-математиков на шляпах написаны натуральные числа, студенты не знают что написано на своих шляпах, но видят числа на шляпах других. При этом они знают, что одно число равно сумме двух других. Их задача - определить свои числа. Дальше прошел такой диалог. 1: «Я не знаю свое число». Какое число у первого?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|