img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 178
всего попыток: 391
Задача опубликована: 08.07.09 00:31
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!

Задачу решили: 147
всего попыток: 205
Задача опубликована: 08.07.09 00:31
Прислал: demiurgos img
Источник: А.К.Толпыго "1000 задач"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.

Задачу решили: 272
всего попыток: 297
Задача опубликована: 10.07.09 19:58
Прислал: Rep img
Источник: И.Ф.Шарыгин "Геометрия, задачник9-11"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.

Задачу решили: 139
всего попыток: 540
Задача опубликована: 13.07.09 00:38
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 5 img
баллы: 100
Лучшее решение: fedyakov

А на какое наименьшее (но большее 1) число квадратов, среди которых нет двух равных, можно разбить квадрат? Если Вы считаете, что такое разбиение невозможно, то введите 0.

(См. также задачу "Прямоугольник из разных квадратов".)
Задачу решили: 151
всего попыток: 274
Задача опубликована: 13.07.09 00:38
Прислал: Rep img
Источник: Всесоюзная олимпиада школьников по математике...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)

Задачу решили: 129
всего попыток: 277
Задача опубликована: 16.07.09 00:35
Прислал: twister img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?

Задачу решили: 133
всего попыток: 154
Задача опубликована: 19.07.09 20:50
Прислал: Rep img
Источник: "Квант"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).

Задачу решили: 143
всего попыток: 210
Задача опубликована: 21.07.09 00:50
Прислал: min img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: rfq (Алексей Кайгородов)

100 пассажиров по очереди заходят в самолет, имеющий 100 мест. Первой заходит старушка и садится на любое место. Каждый следующий пассажир занимает место, указанное в его билете, если это возможно; в противном случае — любое из оставшихся свободных мест.  Какова вероятность, что последнему пассажиру достанется место, указанное в его билете?

Задачу решили: 194
всего попыток: 292
Задача опубликована: 22.07.09 00:40
Прислала: xyz img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)

Задачу решили: 583
всего попыток: 685
Задача опубликована: 22.07.09 23:38
Прислал: AndreTM img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

188 — 4

232 — 0

100 — 2

163 — 1

386 — ?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.