Лента событий:
makar243 добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
54
Трехзначное число в русском языке записывается тремя словами. Эти слова без пробелов написали на прозрачной клетчатой пленке в форме квадрата 13х13 так, что каждая буква находится в квадрате 2х2. Затем этот квадратный лист сложили вдвое, перегнув по горизонтальной оси симметрии, пары букв наложились друг на друга, образовав символы, похожие на китайские иероглифы. Это изображено на рисунке слева. Потом лист развернули и сложили вдвое, перегнув по вертикальной оси симметрии квадратного листа. Получилась вторая группа иероглифов, изображенная на рисунке в центре. Сравнивая соответствующие "иероглифы" и зная принцип их получения, восстановите первоначальный текст и расшифруйте трехзначное число. В ответе запишите расшифрованное число. Для примера, на рисунке справа записано число 246 в формате, соответствующем условию задачи.
Задачу решили:
34
всего попыток:
36
Функция f определена на множестве целых чисел, принимает только целые числа и при этом f(2m)+2f(n)=f(f(m+n)) для всех целых m и n. Найдите максимальное возможное значение f(2019), если f(0)=2019.
Задачу решили:
53
всего попыток:
59
Найти все целые n и m такие, что 2n+1=3m. В качестве ответа введите сумму всех возможных значений n и m.
Задачу решили:
68
всего попыток:
102
Число 14 представили в виде суммы натуральных чисел и перемножили слагаемые. Какое максимальное произведение могло получиться?
Задачу решили:
32
всего попыток:
44
На вписанной в равносторонний треугольник со стороной 1 окружности выбрана точка так, что расстояния от неё до вершин a, b и c составляют геометрическую прогрессию. Найдите b2.
Задачу решили:
52
всего попыток:
71
Отношение среднего геометрического двух чисел к их среднему арифметическому равно 12:13. Найти максимальное отношение этих чисел.
Задачу решили:
15
всего попыток:
58
На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке. Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100? Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.
Задачу решили:
38
всего попыток:
54
В четырехугольнике ABCD точки K, L, M и N - точки пересечения медиан треугольников ABC, BCD, ACD и ABD соответственно. Найдите площадь четырехугольника ABCD, если площадь четырехугольника KLMN равна 12.
Задачу решили:
47
всего попыток:
60
Число 14 представили в виде суммы положительных чисел и перемножили слагаемые. Какое максимальное произведение могло получиться?
Задачу решили:
28
всего попыток:
33
Найдите натуральное число n, которое имеет ровно 12 делителей 1=m1 < m2 < ... < m12=n, при этом делитель с номером равным m4-1 равен (m1+m2+m4)*m8.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|