img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к задаче "Целочисленные точки на эллипсах - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 22
Задача опубликована: 17.07.20 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β. 

Задачу решили: 38
всего попыток: 60
Задача опубликована: 20.07.20 08:00
Прислал: avilow img
Источник: По мотивам ЕГЭ
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: vochfid

При исполнении пенальти футболист попадает в створ ворот с вероятностью 0,9. Вратарь во время пенальти угадывает направление с вероятностью 0,5. Вероятность того, что вратарь отразит мяч, если угадает направление, составляет 0,7, а вероятность того, что вратарь отразит мяч, если не угадает направление, составляет 0,1.  Какова вероятность, что футболист забьет гол вратарю? Ответ укажите в процентах.

Задачу решили: 24
всего попыток: 56
Задача опубликована: 22.07.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Сколькими способами можно расположить 4 точки на плоскости таким образом, что все расстояния между любыми двумя имели ровно два различных значения?

Задачу решили: 17
всего попыток: 18
Задача опубликована: 24.07.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

На каждой грани кубика написано число. При одновременном бросании двух кубиков кубик A выигрывает у кубика B, если число, выпавшее на кубике A больше числа, выпавшего на кубике B. Будем говорить, что кубик A сильнее кубика B, если кубик A чаще выигрывает у кубика B и записывать A > B.

Можно ли на гранях пяти кубиков расставить числа от 1 до 30 (каждое по одному разу) так, чтобы оказалось: Зеленый кубик > Черный кубик > Оранжевый кубик > Желтый кубик > Белый кубик > Зеленый кубик ?

Нетранзитивные кубики

На приведенном примере числа на кубиках расставлены случайным образом.

Задачу решили: 33
всего попыток: 41
Задача опубликована: 27.07.20 08:00
Прислал: solomon img
Источник: Московские математические регаты
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите наибольшее четырехзначное простое число из разных цифр кроме нуля, у которого сумма всевозможных двузначных чисел с использованием его цифр равна 484.

Задачу решили: 30
всего попыток: 51
Задача опубликована: 29.07.20 08:00
Прислал: vochfid img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Дан равносторонний треугольник KMN (|КМ|=32), вершины которого являются центрами квадратов, построенных на сторонах некоторого треугольника АВС.

Найдите площадь треугольника АВС, а в ответе укажите ближайшее целое число.

Задачу решили: 19
всего попыток: 44
Задача опубликована: 31.07.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p?

Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.

Задачу решили: 21
всего попыток: 25
Задача опубликована: 03.08.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: avilow (Николай Авилов)

В треугольнике ABC соотношения длин сторон:
|AB| : |BC| : |CA| = 13 : 17 : 19.

Пусть m - окружность, описанная около треугольника ABC, её длина равна 1440. n - окружность, вписанная в треугольнике ABC.

Определим множество W всех таких точек M на окружности m, которые обладают следующим свойством:
если провести из точки M обе касательные к окружности n, и эти касательные пересекут окружность m в новых точках M1 и M2, то отрезок M1M2 также будет касаться окружность n.

Очевидно, точки A, B и С принадлежат множеству W. Известно, что множество W можно разбивать на взаимно непересекающиеся сплошные дуги на окружности m. Чему равна их суммарная длина?

Задачу решили: 21
всего попыток: 70
Задача опубликована: 05.08.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева).

Пятиугольник из бумажной полосы

Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.

Задачу решили: 30
всего попыток: 33
Задача опубликована: 07.08.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.