Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
49
всего попыток:
63
Сколько существует пар целых чисел (m>2, n>2), для каждой из которых существует бесконечно много таких натуральных чисел k, что (km+k−1) делится на (kn+k2−1)?
Задачу решили:
217
всего попыток:
359
Два лыжника шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в горку, где их скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Каким (в метрах) стало расстояние между ними?
Задачу решили:
223
всего попыток:
333
Для нумерации страниц книги потребовалось всего 1392 цифры. Сколько страниц в этой книге? (Нумерация начинается с первой страницы.)
Задачу решили:
111
всего попыток:
171
Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?
Задачу решили:
108
всего попыток:
319
Сколько натуральных чисел делят число 102011, но не делят число 102010?
Задачу решили:
122
всего попыток:
202
Сколько различных натуральных делителей (включая единицу и само число) у факториала числа 20?
Задачу решили:
65
всего попыток:
99
Соревнование, в котором принимали участие n>1 игроков длилось k дней. Каждый день каждый игрок получал от 1 до n очков, причём все результаты были различны. По окончании соревнования оказалось, что все игроки получили по 26 очков. Найдите все пары (n,k) для которых такое возможно. В ответе укажите количество этих пар.
Задачу решили:
250
всего попыток:
325
Некто решил раздать лишние после варки компота яблоки. Первому встречному он отдал половину всех яблок плюс пол-яблока. Второму — половину оставшихся плюс пол-яблока. Третьему — также половину оставшихся плюс пол-яблока, после чего яблок у него не осталось. Сколько было роздано яблок?
Задачу решили:
130
всего попыток:
147
Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 — пятая степень натурального числа.
Задачу решили:
44
всего попыток:
86
Число называется оранжевым, если оно образуется при выписывании друг за другом без пробелов (в десятичной системе счисления) всех натуральных чисел от 1 до N, где N>1. Например, числа 12345 и 123456789101112131415 являются оранжевыми, а 1 — нет. Сколько решений в оранжевых числах имеет уравнение xy=z?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|