img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon предложил задачу "Прямоугольник на 4 части" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 35
всего попыток: 60
Задача опубликована: 15.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите все целые решения уравнения: p5+p3+2=q2-q. В ответе укажите значение суммы всех q.

Задачу решили: 24
всего попыток: 49
Задача опубликована: 18.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Шахматную доску 8×8 разрезали на n прямоугольников так, что в каждом прямоугольнике одинаковое число белых и черных клеток, и при этом, если ai - число клеток в i-м прямоугольнике, то a1 < a2 < ... < an

Найдите наибольшее число n, при котором возможно такое разбиение. В ответе укажите количество возможных различных разбиений a1, a2, ..., aпри полученном n.

Задачу решили: 27
всего попыток: 42
Задача опубликована: 20.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.

Задачу решили: 39
всего попыток: 54
Задача опубликована: 22.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: avilow (Николай Авилов)

Есть мешок сахара, чашечные весы и гирька в 1 г. За какое минимальное число взвешений можно взвесить 1 кг сахара?

+ 6
  
Задачу решили: 27
всего попыток: 80
Задача опубликована: 25.01.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В кубе ABCDA1B1C1D1 с ребром 6 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользит» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке.

Объем тела

Объём тела, ограниченного этой поверхностью, будет иметь вид kπ. В ответе укажите числовой множитель k.

Задачу решили: 11
всего попыток: 39
Задача опубликована: 27.01.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите количество решений в целых числах уравнения:
x/(y + z) + y/(z + x) + z/(x + y) = 4
в пределах: 0 ≤ x + y + z ≤ 6000.

Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.

Задачу решили: 25
всего попыток: 65
Задача опубликована: 29.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Найдите количество действительных решений уравнения x = 1964 sin x - 189.

Задачу решили: 26
всего попыток: 39
Задача опубликована: 01.02.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим «многоэтажные ёлочки», каждый этаж которых занимает три строки. Например, на рисунке изображена четырехэтажная елочка.

Пирамида из натурального ряда II

Найдите сумму чисел, находящихся внутри контура 123-этажной ёлочки этой числовой пирамиды.

Задачу решили: 24
всего попыток: 73
Задача опубликована: 03.02.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

В равнобедренном треугольнике высота к основанию H=R+p+r, где p - расстояние между центрами описанной и вписанной окружностей, R, r - их радиусы соответственно, выражены натуральными числами. Найти наименьшее значение высоты H.

Задачу решили: 26
всего попыток: 36
Задача опубликована: 05.02.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Решите уравнение 12⋅n + 22⋅(n−1) + … + (n−1)2⋅2 + n2⋅1= k2. Это уравнение является математической моделью геометрической задачи на разбиение квадрата со стороной k на систему меньших квадратов. В ответе укажите наименьшее число k>1, допускающее геометрическую интерпретацию найденного решения.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.