Лента событий:
Sam777e
решил задачу
"Прямоугольник на 4 части"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
36
Отрезки, соединяющие основания высот в остроугольном треугольнике, образуют пифагорову тройку 5,12,13. Найти площадь этого треугольника.
Задачу решили:
31
всего попыток:
41
Найдите минимальное a такое, что уравнение x2-ax+2022=0 имеет 2 целых положительных корня.
Задачу решили:
28
всего попыток:
53
Пусть a, b и c - различные натуральные числа такие, что 1/a+1/b+1/c=1/42. Чему равно наименьшее значение суммы a+b+c?
Задачу решили:
26
всего попыток:
33
На стороне АВ правильного восьмиугольника ABCDEFGH во внешную сторону построен квадрат ABKL. Две диагонали HD и FC пересекаются в точке О. Найти угол LOK в градусах.
Задачу решили:
28
всего попыток:
29
Из середины сторон треугольника АВС с углами 40°, 60°, 80° проведены перпендикуляры к двум другим сторонам, которые при пересечении образуют шестиугольник внутри. Найти отношение площади шестиугольника к площади треугольника.
Задачу решили:
22
всего попыток:
43
Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.
Задачу решили:
28
всего попыток:
30
На сторонах единичного квадрата отметили точки A, B, C и D так, что прямая АС параллельна двум сторонам квадрата, а прямая BD - двум другим сторонам квадрата. Отрезок АВ отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок CD?
Задачу решили:
26
всего попыток:
41
Пусть a, b и c действительные неотрицательные числа такие, что a+b+c=2. Найдите максимум выражения (a2-ab+b2)*(b2-bc+c2)*(c2-ca+a2).
Задачу решили:
26
всего попыток:
32
Найти площадь треугольника, у которого радиусы вписанной и описанной окружностей равны соответственно 24 и 50, синус одного из углов равен 0,96.
Задачу решили:
28
всего попыток:
29
В равностороннем треугольнике АВС с длиной стороны равной 14 проведен отрезок DE, где D - середина стороны АС, Е - точка на стороне АВ так, что угол ADE=75°. Далее из точки Е проведен перпендикуляр к стороне АВ до пересечения со стороной ВС в точке F. Найти периметр треугольника BEF.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|