img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 28
всего попыток: 31
Задача опубликована: 02.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: aaa_uz

Из всех 10 цифр (0, 1, 2, ..., 9) составили два пятизначных числа, при этом использовали все цифры и одно число оказалось меньше второго ровно в два раза. Найдите наименьшее число.

Задачу решили: 29
всего попыток: 38
Задача опубликована: 05.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Косинус вершинного угла равнобедренного треугольника равен 527/625. Найти отношение расстояния этой вершины до центра вписанной окружности к длине основания.

Задачу решили: 19
всего попыток: 21
Задача опубликована: 07.09.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. Для каких простых чисел n начиная с 2 и не превосходящих 1000, число полученных частей в треугольнике является квадратным?

В ответе укажите сумму всех таких n.

На рисунке приведен равносторонний треугольник со стороной 6, в который вписаны 5 меньших равносторонних треугольников.

Треугольники в треугольнике

Задачу решили: 24
всего попыток: 26
Задача опубликована: 09.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В треугольнике из двух вершин проведены высоты, из третьей вершины биссектриса. Длины их относятся 3:6:4 (высота:высота:биссектриса). Найти угол в градусах при вершине, из которой проведена биссектриса.

Задачу решили: 4
всего попыток: 47
Задача опубликована: 12.09.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку:

Полиомино в квадрате 9x9

На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком.

В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата.

Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:

  1. Для полиомино существует квадрат 9x9, в котором оно помещается целиком.
  2. Полиомино является «максимальным»: Если к нему добавить хотя бы одну клетку, то уже не существует квадрат 9x9, в котором оно будет помещаться целиком.

Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим:
n1 – Количество полиомино, занимающих 9 строк и 9 столбцов;
n2 – Количество полиомино, занимающих 9 строк и 10 столбцов (или наоборот);
n3 – Количество полиомино, занимающих 10 строк и 10 столбцов;
n4 – Количество полиомино, занимающих 10 строк и 11 столбцов (или наоборот);
n5 - Количество полиомино, занимающих 11 строк и 11 столбцов.

В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5

Задачу решили: 34
всего попыток: 48
Задача опубликована: 14.09.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

a+b=1, a2+b2=2. Найдите a11+b11.

Задачу решили: 32
всего попыток: 38
Задача опубликована: 16.09.22 08:00
Прислал: fortpost img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Каждый зритель, пришедший на спектакль «Королевский жираф», принёс с собой либо одну дохлую кошку, либо два кочана гнилой капусты, либо три тухлых яйца. Стоявший у входа Гекльберри Финн подсчитал, что кошек было 64 штуки. После спектакля оба артиста — король и герцог — были с ног до головы закиданы припасами, причём на долю каждого досталось поровну предметов (а промахов жители Арканзаса не делают). Правда, король принял на себя лишь пятую часть всех яиц и седьмую часть капусты, но все дохлые кошки полетели именно в него. Сколько зрителей пришло на представление?

Задачу решили: 30
всего попыток: 48
Задача опубликована: 19.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений системы уравнения:
x+2y+4z=9,
4yz+2xz+xy=13,
xyz=3.

Задачу решили: 21
всего попыток: 36
Задача опубликована: 21.09.22 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Найти количество различных троек действительных чисел (a, b, c) таких, что:
a2+b2+c2=66,
a3+b3+c3=408,
a4+b4+c4=2658.

Задачу решили: 31
всего попыток: 50
Задача опубликована: 23.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество действительных решений:
sin(π*x)=|ln|x||

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.