Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
99
всего попыток:
132
Найдите сумму всех простых чисел p таких, что число p2 + 11 имеет ровно 6 различных делителей (включая единицу и само число).
Задачу решили:
92
всего попыток:
103
Найти сумму всех натуральных чисел, имеющих ровно 6 делителей, сумма которых равна 3500.
Задачу решили:
22
всего попыток:
101
Через точку на окружности единичного радиуса (r=1) проведена прямая на расстоянии от ее центра . На прямой вне окружности и слева от точки отметим на расстоянии от нее точку , а на расстоянии слева от точки - точку и проведем через них окружности с центром в т. так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник . Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. Если и натуральные числа, существует точек и соответствующих им точек таких, что площади всех треугольников равны, причем . Найдите все такие точки , в ответе укажите сумму соответствующих им .
Задачу решили:
109
всего попыток:
181
На клетчатой бумаге нарисован прямоугольник 3 на 10 (3 строки и 10 столбцов). Некоторые клетки закрашены. В каждой строке и в каждом столбце есть хотя бы одна закрашенная клетка. Строки содержат 4, 5 и 6 закрашенных клеток. Найти максимальное число закрашенных столбцов (столбец называется закрашенным, если все его клетки закрашены).
Задачу решили:
78
всего попыток:
173
Пусть N! обозначает число равное произведению всех чисел от 1 до N. Будем считать, что 0!=1. Удалим из ряда натуральных чисел все числа у которых сумма факториалов их цифр не равна 111. Последним оставшимся числом будет число состоящее из 111 единиц. А чему равна сумма двух первых оставшихся чисел?
Задачу решили:
113
всего попыток:
177
Каждый урок учитель опрашивает 9 или, если успевает, 10 учеников. Какое минимальное число уроков должно пройти, чтобы все ученики были опрошены одинаковое число раз, если в классе 33 ученика?
Задачу решили:
40
всего попыток:
293
Найдите три средних цифры числа (10604+1)2012.
Задачу решили:
129
всего попыток:
227
В комнате сидели 2 матери и 2 дочери, у которых сегодня день рождения. Им всем вместе исполнилось 100 лет. А 3 года назад всем мамам и всем дочкам было ровно 93 года. Сколько лет самой старшей из них, если одна из мам на 33 года старше своей дочери, а другая мама старше своей дочери менее, чем на 32 года?
Задачу решили:
122
всего попыток:
184
Найти натуральное число, у которого произведение его делителей равно 331776.
Задачу решили:
159
всего попыток:
224
Вовочка и Марья Ивановна (школьная учительница Вовочки) должны проверить 30 школьных заданий. Учительница не отпустит его играть с папой в футбол прежде, чем закончится проверка всех 30 заданий - ее и Вовочкиных. Папа ждет Вовочку с нетерпением, и уже разминается на футбольном поле. Как Вовочке и учительнице лучше распределить между собой задания, чтобы Вовочка смог пораньше освободиться? На проверку одного задания он тратит в среднем 17 минут, а Марья Ивановна - 5 минут. Найдите наименьшее время (в минутах), которое им необходимо будет потратить на проверку всех заданий.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|