Лента событий:
solomon
добавил
комментарий к решению задачи
"Прямоугольник на 4 части" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
31
В таблице умножения от 1х1 до 7х7 выделен центральный ступенчатый квадрат максимального размера так, как показано на рисунке. Сколькими нулями оканчивается произведение чисел во всех клетках такого же ступенчатого квадрата для таблицы умножения от 1х1 до 25х25?
Задачу решили:
32
всего попыток:
34
В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус внутренней окружности, если ширина образовавшегося кольца равна 8.
Задачу решили:
25
всего попыток:
27
Ванна с двумя кранами горячей и холодной воды заполняется горячей водой автономно за 17 минут, холодной за 11 минут. При одновременном заполнении устанавливается определенное отношение объема горячей воды к объему холодной воды. На сколько минут нужно раньше включить горячую воду до включения холодной, чтобы это отношение зеркально поменялось?
Задачу решили:
30
всего попыток:
36
Около четырёхугольника ABCD можно описать окружность. Кроме того, |AB| = 3, |BC| = 4, |CD| = 5 и |AD| = 2. Найдите |AC|2.
Задачу решили:
24
всего попыток:
40
В четырехугольнике ABCD выполняются равенства |AB|=|BD|, угол ВАС=30°, угол ВСА=31°, угол DBC=3°. Найти угол BDC в градусах.
Задачу решили:
9
всего попыток:
16
Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске). Разрешена такая операция: если на каких-то двух досках написаны числа a и b, a≤b, то можно их заменить на числа 2a и b-a. Какое максимальное количество чисел на досках можно обнулить посредством таких операций?
Задачу решили:
16
всего попыток:
89
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких попарно неконгруэнтных ломаных?
Задачу решили:
29
всего попыток:
34
Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите квадрат отношения этой хорды к диаметру большей окружности.
Задачу решили:
27
всего попыток:
30
На доске записано 21 последовательных натуральных чисел. После вычеркивания одного из чисел и сложения оставшиеся 20 чисел получили 2023. Какое число вычеркнули?
Задачу решили:
22
всего попыток:
23
Про четырехугольник ABCD известно следующее: угол DAB равен 150°, cумма углов DAC и ABD равна 120°, разность углов DBC и ABD равна 60°. Найти угол BDC в градусах.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|