Лента событий:
solomon
добавил
комментарий к решению задачи
"Прямоугольник на 4 части" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
28
Однажды в колхозе некий работник договорился о зарплате за 12 месяцев работы с 1-го Апреля: 800 рублей плюс Кляча, которая стоила всегда в целых рублях, но не более 50-ти! По причине форс-мажора, работник был вынужден уволиться после 7 месяцев работы, и ему заплатили: 490 рублей + Кляча. Всё честно! Сколько рублей стоила Кляча на момент договорённости?
Задачу решили:
19
всего попыток:
21
Даны некие натуральные числа 1<p<n, где р - наименьший делитель числа n (n//р), и при этом m = 2+р2 - наибольший собственный делитель: n//m. Найдите сумму всех таких n.
Задачу решили:
21
всего попыток:
31
Найдите наименьшее целое число L, что в квадрат L × L можно поместить прямоугольник 1 × 2024. С НОВЫМ ГОДОМ!
Задачу решили:
26
всего попыток:
30
В выражении разные буквы соответствуют разным цифрам, найдите его значение. (С+Н+Е+Г+У+Р+О+Ч+К+А)*(С+Н+Е+Г+У+Р+О+Ч+К+А) - (СНЕГ)/(СНЕГ)=?
Задачу решили:
12
всего попыток:
15
В числовом ребусе ДРА + КОН + ЗМЕЯ = 2024 + 2025 разным буквам соответствуют разными цифры. Сколько решений имеет ребус? Задача требует подробного решения.
Задачу решили:
10
всего попыток:
30
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы мы увидели все эти 4 символа (в любой последовательности)?
Задачу решили:
19
всего попыток:
25
Найти квадрат отношения радиусов, описанных около двух четырехугольников со сторонами 2, 3, 4, 5 и 3, 4, 5, 6.
Задачу решили:
22
всего попыток:
37
a/b + b/c + c/a=3,
Задачу решили:
18
всего попыток:
23
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(1, 6) + f(2, 6) + f(3, 6) + f(4, 6) + f(5, 6) + f(6, 6).
Задачу решили:
17
всего попыток:
19
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите f(9, 12) + f(9, 13).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|