img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к решению задачи "Прямоугольник на 4 части" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 25
Задача опубликована: 12.02.24 08:00
Прислал: avilow img
Источник: ЕГЭ
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Lec

В правильной шестиугольной призме все ребра равны.

Две равные фигуры

Найдите угол между прямыми A1B и B1E в градусах.

Задачу решили: 25
всего попыток: 26
Задача опубликована: 14.02.24 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Девять действительных a1, a2 ..., a9 образуют арифметическую прогрессию. Известно, что a9 в 3 раза больше среднего арифметического этих девяти чисел. Найдите a1, если известно, что a4 = 6.

+ 2
  
Задачу решили: 22
всего попыток: 23
Задача опубликована: 16.02.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

Найдите наибольшее нaтуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.

Задачу решили: 20
всего попыток: 33
Задача опубликована: 19.02.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Суммы цифр натуральных чисел N и N+1 кратны 22. Найдите наименьшее число N. 

Задачу решили: 26
всего попыток: 29
Задача опубликована: 21.02.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: solomon

В сосуде, имеющем форму правильной треугольной призмы, находилась вода, причём её уровень составлял 30 сантиметров. Всю эту воду перелили в пустой сосуд, имеющий форму правильной шестиугольной призмы, сторона основания которой вдвое меньше стороны основания треугольной призмы. Чему равен уровень воды теперь? Ответ выразите в сантиметрах

Задачу решили: 9
всего попыток: 15
Задача опубликована: 23.02.24 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Пусть R - луч, с вершиной в точке P(0; 0) и проходящий через точку (1013; 1001). M - это множество точек с натуральными координатами, не превосходящими 1016. Луч R начинает вращаться вокруг своей вершины P по часовой стрелке, пока на нём одновременно не окажутся как минимум 3 точки из M.

На какой угол повернулся луч R к этому моменту? В качестве ответа введите абсолютную величину тангенса этого угла.


Задачу решили: 25
всего попыток: 28
Задача опубликована: 26.02.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вовочка в понедельник купил 1 мороженое, 2 пирожных и 3 мармеладки и заплатил за это 235 рублей. Во чторник он купил 3 порции мороженого, 2 пирожных и 1 мармеладку и заплатил за это 205 рублей. Сколько рублей должен будет заплатить Вовочка в среду, если он купит 6 порций мороженого, 5 пирожных и 4 мармеладки?

Задачу решили: 16
всего попыток: 30
Задача опубликована: 28.02.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2601
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество различных (неконгруэнтных) фигур, каждую из которых можно сложить следующими двумя способами:

Задачу решили: 9
всего попыток: 23
Задача опубликована: 01.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?

Задачу решили: 25
всего попыток: 25
Задача опубликована: 04.03.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: solomon

К двузначному числу слева приписали 1, а справа 8, в итоге оно увеличилось в 28 раз. Найдите сумму всех таких двузначных чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.