Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
25
В правильной шестиугольной призме все ребра равны. Найдите угол между прямыми A1B и B1E в градусах.
Задачу решили:
25
всего попыток:
26
Девять действительных a1, a2 ..., a9 образуют арифметическую прогрессию. Известно, что a9 в 3 раза больше среднего арифметического этих девяти чисел. Найдите a1, если известно, что a4 = 6.
Задачу решили:
22
всего попыток:
23
Найдите наибольшее нaтуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.
Задачу решили:
20
всего попыток:
33
Суммы цифр натуральных чисел N и N+1 кратны 22. Найдите наименьшее число N.
Задачу решили:
26
всего попыток:
29
В сосуде, имеющем форму правильной треугольной призмы, находилась вода, причём её уровень составлял 30 сантиметров. Всю эту воду перелили в пустой сосуд, имеющий форму правильной шестиугольной призмы, сторона основания которой вдвое меньше стороны основания треугольной призмы. Чему равен уровень воды теперь? Ответ выразите в сантиметрах
Задачу решили:
9
всего попыток:
15
Пусть R - луч, с вершиной в точке P(0; 0) и проходящий через точку (1013; 1001). M - это множество точек с натуральными координатами, не превосходящими 1016. Луч R начинает вращаться вокруг своей вершины P по часовой стрелке, пока на нём одновременно не окажутся как минимум 3 точки из M. На какой угол повернулся луч R к этому моменту? В качестве ответа введите абсолютную величину тангенса этого угла.
Задачу решили:
25
всего попыток:
28
Вовочка в понедельник купил 1 мороженое, 2 пирожных и 3 мармеладки и заплатил за это 235 рублей. Во чторник он купил 3 порции мороженого, 2 пирожных и 1 мармеладку и заплатил за это 205 рублей. Сколько рублей должен будет заплатить Вовочка в среду, если он купит 6 порций мороженого, 5 пирожных и 4 мармеладки?
Задачу решили:
16
всего попыток:
30
Найдите количество различных (неконгруэнтных) фигур, каждую из которых можно сложить следующими двумя способами:
Задачу решили:
9
всего попыток:
23
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?
Задачу решили:
25
всего попыток:
25
К двузначному числу слева приписали 1, а справа 8, в итоге оно увеличилось в 28 раз. Найдите сумму всех таких двузначных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|