Лента событий:
TALMON
добавил комментарий к задаче
"Целочисленные точки на эллипсах - 3"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
30
Чевиана из вершины прямого угла треугольника АВС(угол С-прямой) СК равен катету АС и делит биссектрису из вершины В в точке пересечения пополам. Найти угол В в градусах.
Задачу решили:
24
всего попыток:
33
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Задачу решили:
21
всего попыток:
28
Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.
Задачу решили:
9
всего попыток:
13
В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки. Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.
Задачу решили:
23
всего попыток:
24
Дедушка, которому более чем 80 лет (но менее чем 100 лет). Сегодня он может сказать своим внукам, которые имеют разный возраст: "Произведение наших трех возрастов равно сумме квадратов наших возрастов". Сколько лет дедушке сегодня?
Задачу решили:
19
всего попыток:
21
2024 + ФУТ + БОЛ = ИГРА. Разным буквам соответствуют различные цифры. Буквы Ф, Б, И не равны нулю. Найти наибольшее значение слова ИГРА.
Задачу решили:
22
всего попыток:
23
(√15 + √21 + √25 + √35)/(√3 + √7 + √20)=(√a + √b)/2, где a и b - натуральные числа. Найдите их сумму.
Задачу решили:
21
всего попыток:
28
Взаимно простые целые числа x, y и z удовлетворяют следующим условиям: x2+y2+z2=2xy+2yz+2zx 0<z<y<x<12345 Найти наибольшее значение x.
Задачу решили:
19
всего попыток:
21
В числовом ребусе
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|