Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
68
всего попыток:
95
Последовательность {an} (n = 0, 1, 2, …) задана формулой an = 23n+36n+2+56n+2. Найдите НОД(a0, a1, …, a2007).
Задачу решили:
45
всего попыток:
65
Пусть а1, а2, …, а100 – натуральные числа. Для каждой пары чисел аi, аj при i < j выписываются числа аi+аj, аiаj и |аi–аj|. Найдите наибольшее возможное значение количества нечётных чисел среди выписанных.
Задачу решили:
51
всего попыток:
314
M сообщает P и S , что имеются два натуральных числа, Чему равна максимальная сумма чисел?
Задачу решили:
81
всего попыток:
94
Натуральное число n возвели в некоторую натуральную степень, после чего у результата стерли последние две цифры и снова получили число n. Найдите максимально возможное значение числа n.
Задачу решили:
47
всего попыток:
59
Даны n действительных чисел a1, a2, …, an. Известно, что все попарные суммы ai+aj (i ≠ j) – различны и в порядке возрастания образуют арифметическую прогрессию. Найдите максимально возможное n?
Задачу решили:
101
всего попыток:
122
Среди чисел, записываемых только нулями и единицами, найдите наименьшее кратное 14.
Задачу решили:
68
всего попыток:
115
Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.
Задачу решили:
55
всего попыток:
65
Любое простое число вида p=4k+1 можно единственным способом представить в виде: p = a² + b², где a<b - целые положительные числа. Например: 165100009 = 5520² + 11603². Квадраты таких простых чисел также можно представить единственным способом в виде: p² = x² + y², где x<y - целые положительные числа. Найдите два целых положительных числа x<y, для которых выполняется: 165100009² = x² + y². В качестве ответа введите оба числа подряд без пробелов: x (меньший), и сразу за ним y (больший).
Задачу решили:
48
всего попыток:
129
n = 3 × 77. Найдите наибольший общий делитель 7n - 1 и 7n + 4949.
Задачу решили:
40
всего попыток:
52
Венцом последовательности назовем число, полученное так: сначала вычисляем модуль разности первого и второго членов, затем модуль разности этого числа и третьего члена и т.д. до последнего члена. Пусть у нас все 28 костяшек домино сложены в цепочку по правилам домино, то есть костяшки прикладываются половинками с одинаковыми числами. Числа на половинках образуют последовательность из 56 членов. Известно, что она начинается с пятерки. Чему равен венец этой последовательности?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|